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SUMMARY 

 

 

To navigate the world, we must efficiently extract relevant information from complex 

sensory inputs to form perceptions and make decisions on a moment-to-moment basis. 

The efficient encoding of sensory information necessarily relies on the ability of the 

pathway to dynamically interpret the sensory input according to the context under which 

external stimuli are processed. Internally, this context is represented by the state of the 

brain, which can be modulated by bottom-up processes such as sensory adaptation, 

intrinsic mechanisms such as neuromodulators, and top-down processes such as arousal.  

 

This thesis examines the modulation of brain state induced via bottom-up sensory 

adaptation and the intrinsic brain states, the relationship between brain state and sensory-

evoked activity, and the potential implications of brain state modulation for the 

perception of the stimulus. 

 

Using voltage-sensitive dye imaging in anesthetized rats and the paradigm of detection / 

spatial discrimination task by the ideal observer, I quantified, in the adapted state, how 

the cortical response to a stimulus in the vibrissa pathway was shaped and how the 

information for detecting and spatially discriminating the stimulus was differentially 

optimized. Cortical activation and detection / discrimination tradeoff were quantified in 

relation to the degree of adaptation, which was modulated continuously by the frequency 

and velocity of the adapting stimulus. Finally, I investigated the intrinsic brain states 
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reflected in the spontaneous cortical activity and how it modulated sensory evoked 

response.  

 

This thesis investigates the regulation of brain state via bottom-up sensory adaptation and 

intrinsic mechanisms, providing a glimpse into a high-dimensional continuum of cortical 

dynamics. 
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1 

CHAPTER 1  INTRODUCTION  

  

1.1 An overview of brain state 

A fundamental pursuit of neuroscience is to understand how external stimuli are encoded 

in the brain and how the information about the stimuli is extracted to form sensory 

perception. An interesting and challenging aspect of this problem is that the brain is not 

simply a machine that transforms an input stimulus to an output. One piece of evidence 

for the highly dynamical nature of the brain is the high trial-to-trial variability of response 

to the same stimulus under well-controlled experimental conditions in the primary 

sensory cortex, relative to the lower response variability in earlier stages of the pathway 

(Adams et al., 1997; Arabzadeh et al., 2005; Lottem and Azouz, 2011; Scholvinck et al., 

2015). This cortical variability arises, at least partially, from the internal state of the 

brain, which encompasses a variety of properties of the neural system that affect multiple 

aspects of sensory encoding. Brain state can refer to spontaneous spiking and membrane 

potential fluctuations in individual cells, synaptic plasticity, network dynamics such as 

the excitation-inhibition balance, and the correlation and synchrony among a subset of 

cells (Buonomano and Maass, 2009; Harris and Thiele, 2011). Brain state provides the 

context under which the stimulus is encoded, and determines what information about the 

stimulus is being conveyed, which ultimately influences the animal‟s perception and 

behavior.  

 

Given the wide-spread effects and diverse properties of brain state, it is likely a high-

dimensional space where multiple mechanisms can be dynamically combined and fine-

tuned depending on the task of the sensory system, posing an extremely complicated and 

challenging problem for neuroscientists. Nonetheless, the state of the brain is at least 

partially reflected in the spontaneous activity. Studies of spontaneous oscillations have 
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been fruitful and provided a glimpse into the brain state space. The mammalian cortex 

exhibits a wide range of frequency oscillations, ranging from 0.05 to 500 Hz, and the 

power of EEG or local field potential (LFP) linearly decreases with frequency on a 

logarithmic scale (Buzsaki and Draguhn, 2004; Freeman et al., 2000). These bands of 

oscillations have been shown to be associated with specific brain states and can either 

compete or interact with each other, locally or globally (Buzsaki and Draguhn, 2004; 

Csicsvari et al., 2003; Engel et al., 2001; Klimesch, 1999; Kopell et al., 1999; Steriade, 

2001). For example, delta (0-4 Hz), alpha (8-12 Hz), and beta (13-25 Hz) waves in the 

EEG are observed in different stages and depths of sleep and general anesthesia (Brown 

et al., 2010). Alpha and theta rhythms are implicated in cognitive and memory 

performance (Klimesch, 1999). Gamma rhythm (30-80 Hz) has been an intense subject of 

research in recent studies. Although the mechanism of Gamma has been proposed and 

that it is generally thought to be most prominent during alertness and attention 

(McCormick et al., 2015; Kopell et al., 1999; Börgers et al., 2008), the relationship 

between Gamma and cortical state is still debated. For example, gamma increases in 

rodents during active behavior (Harris and Thiele, 2011; Niell and Stryker, 2010), but 

selective attention can either decrease or increase Gamma power in primates (Chalk et 

al., 2010; Fries et al., 2001; Harris and Thiele, 2011; Khayat et al., 2010).  

 

Particularly well studied brain states are the “synchronized” and “de-synchronized” 

states. It was discovered that during slow wave sleep, the EEG displays characteristic low 

frequency, high amplitude oscillations, while alert wakefulness displays high frequency, 

low amplitude EEG (Moruzzi and Magoun, 1949; Steriade et al., 1993). These two states, 

respectively termed “synchronized” and “de-synchronized” states, represent the extreme 

ends of the arousal spectrum. Following these early studies, much effort has been poured 

into this area and started to paint a broadly consistent picture where these two states are 

shown to be indicative of cortical dynamics and behavioral states. Specifically, the de-
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synchronized state is signified by cortical de-synchronization (Curto et al., 2009; Hirata 

and Castro-Alamancos, 2010; Poulet and Petersen, 2008), high-frequency, small-

amplitude fluctuations in the cortical EEG or LFP, associated with thalamic 

depolarization and tonic firing (Castro-Alamancos and Oldford, 2002; Hirata and Castro-

Alamancos, 2010; Poulet et al., 2012), thalamocortical synaptic depression (Castro-

Alamancos and Oldford, 2002), suppressed cortical representation of an external stimulus 

(Castro-Alamancos, 2002; Poulet et al., 2012; Otazu et al., 2009), and active behavior 

such as arousal and active whisking in rodents (Castro-Alamancos, 2004; Crochet and 

Petersen, 2006; Poulet et al., 2012). In contrast, in the synchronized state, the low 

frequency, high amplitude cortical oscillations are associated with thalamic 

hyperpolarization, cortical synchronization, stronger cortical response to the stimulus in 

terms of the amplitude of field potential (Castro-Alamancos, 2002) and single cell 

membrane potential (Crochet and Petersen, 2006), and quiescent behavior or lack of 

arousal (Castro-Alamancos, 2004; Crochet and Petersen, 2006; Poulet et al., 2012). 

Figure 1.1 illustrates these states. Studies have also independently shown the suppression 

of cortical activity to a stimulus when the animal is alert or actively sensing (Fanselow 

and Nicolelis, 1999; Otazu et al., 2009) or when the thalamus is firing tonically (Crick, 

1984; Sherman, 2001a; Swadlow and Gusev, 2001).  

 

Many mechanisms have been shown to be able to influence the brain state. They can be 

broadly classified into intrinsic, bottom-up or top-down mechanisms. Under anesthesia, 

the cortex is mostly under the synchronized state, but can show spontaneous de-

synchronized states (Clement et al., 2008; Curto et al., 2009). During sleep, intrinsic 

neuromodulatory mechanisms switch the brain from slow-wave sleep with low-

frequency, synchronized EEG to REM sleep with high-frequency, de-synchronized EEG 

(Brown et al., 2010). Neuromodulators, particularly acetylcholine from the brainstem 

laterodorsal tegmentum (reticular formation) (Castro-Alamancos and Gulati, 2014; 
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Castro-Alamancos and Oldford, 2002; Steriade et al., 1990; Williams et al., 1994) and 

norepinephrine (Constantinople and Bruno, 2011) can produce a de-synchronized state 

and facilitate wakefulness. Bottom-up drive from external stimuli can also induce state 

change (Ferezou et al., 2007; Hasenstaub et al., 2007), and sensory adaptation can 

substantially change the thalamic synchrony and the cortical encoding of a stimulus 

(Temereanca et al., 2008; Wang et al., 2010). Tonic glutamatergic drive from the 

thalamus has been shown to be sufficient to de-synchronize the cortex (Harris and Thiele, 

2011; Hirata and Castro-Alamancos, 2010). Top-down influences like active whisking 

behavior, arousal, and corticocortical input (such as vM1 activation) can all produce de-

synchronized state and suppressed cortical response (Fanselow and Nicolelis, 1999; 

Otazu et al., 2009; Poulet et al., 2012; Zagha et al., 2013). More complex cognitive 

functions like attention have been shown to enhance cortical correlation (Kohn et al., 

2009) and may increase or decrease high-frequency gamma oscillation, depending on the 

cortical area and the type of task (Chalk et al., 2010; Fries et al., 2001; Harris and Thiele, 

2011; Khayat et al., 2010). 

 

Even though there is an emergence from the literature that the two seemingly bimodal 

synchronized and de-synchronized states of the cortex encompass a set of broadly 

consistent cortical dynamics and behavior (see Figure 1.1), it is important to note that 

there is a growing body of evidence that the brain state is likely a high dimensional 

continuum, not discrete states that can be fully captured by the frequency of spontaneous 

activity (Harris and Thiele, 2011). The synchronized and de-synchronized states were 

originally thought to exist only in sleep and wakefulness, respectively. However, more 

recent studies have shown the slow frequency EEG or LFP or synchronized cortical 

activity in quiet wakefulness, suggesting a continuum of arousal states (Castro-

Alamancos, 2004; Crochet and Petersen, 2006; Ferezou et al., 2007; Greenberg et al., 

2008; Harris and Thiele, 2011; Poulet and Petersen, 2008; Zagha and McCormick, 2014; 
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Zagha et al., 2013). Further evidence points to more dynamic effects and mechanisms of 

brain state. As mentioned above, although attention decreases low-frequency content, it 

could either increase or decrease gamma power, and could enhance or reduce correlation 

and synchrony (Cohen and Maunsell, 2009; Kohn et al., 2009), depending on the cortical 

area and the task (Chalk et al., 2010; Fries et al., 2001; Harris and Thiele, 2011; Khayat et 

al., 2010). Stimulation of dorsal Raphe nuclei in rats decreases both low frequency and 

gamma power (Puig et al., 2010).  The activities of different classes of interneurons have 

been shown to depend on the behavioral correlates of the desynchronized state (Harris 

and Thiele, 2011). For example, in desynchronized states corresponding to locomotion 

(Niell and Stryker, 2010), difficult discrimination tasks (Chen et al., 2008), or increased 

thalamic drive, fast-spiking neurons increase their firing rate (Hirata and Castro-

Alamancos, 2010); but the opposite effect ensues in actively whisking rodents, where 

fast-spiking neurons decrease firing rate and non-fast spiking neurons increase their rate 

(Gentet et al., 2010). These results suggest that although there are common effects and 

mechanisms in brain states broadly classified using its frequency content, the cortical 

properties can be dynamically combined and tuned depending on the specific behavior 

and cognitive function.  

 

In a broader view, the effect of state modulation can be local or global. Attention has 

been shown to reduce the low frequency LFP at a local level. In general, slow oscillations 

tend to affect a larger network, often in travelling waves across the cortex, possibly 

facilitating the integration of information across multiple cortical areas (Buzsaki and 

Draguhn, 2004; Csicsvari et al., 2003; Ferezou et al., 2006, 2007; Harris and Thiele, 

2011; Luczak et al., 2007; Petersen et al., 2003b; Steriade, 2001). Brain state also exists 

in and regulates other areas outside of the neocortex. Theta rhythm in the hippocampus 

(different from theta rhythm in the neocortex) for instance, is associated with mobile and 

exploratory behaviors in rodents (Vanderwolf, 1969). Taken together, the brain state is 
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likely a multidimensional continuum where multiple cortical, thalamic/sub-cortical, and 

neuromodulatory mechanisms interact dynamically and provide the context for the 

encoding of external stimuli. 

 

 

Figure 1.1 An illustration of two states.  

The de-synchronized state is characterized by fast but small cortical fluctuations, 

accompanied by thalamic tonic firing, suppressed cortical response to external stimuli, 

and typically associated with alertness and active behavior such as active whisking. In 

contrast, the synchronized state is characterized by slow but large cortical fluctuations, 

associated with thalamic burst firing, relatively strong cortical response to external 

stimuli, and typically associated with quiescence or sleep. However, these two states 

signify the two extremes of the brain state spectrum, which is likely a continuum. 

 

1.2  Sensory adaptation and bottom-up modulation on brain state 

One major form of brain state modulation through bottom-up input is rapid sensory 

adaptation. Our sensory systems are constantly inundated with a flood of stimuli every 

waking hour, yet we efficiently extract relevant information to form perceptions and 

make decisions. The efficient encoding of sensory information necessarily relies on the 

ability of the pathway to dynamically shift its operating regime. When presented with 

repetitive and persistent stimuli, neurons, particularly cortical neurons, decrease their 
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firing rate on the time scale of hundreds of milliseconds (Webber and Stanley, 2006). 

This cross-modal and ubiquitous property, known as rapid sensory adaptation, is not 

simply the fatigue of the system, but rather induces a state with significant changes in 

neurophysiology, behavior, and stimulus encoding.  

 

Adaptation has been shown to fundamentally change the encoding of the stimulus and the 

information conveyed (Ahissar et al., 2000; Chung et al., 2002; Clifford et al., 2007; Ego-

Stengel et al., 2005; Fairhall et al., 2001; Higley and Contreras, 2006; Khatri et al., 2009; 

Maravall et al., 2007; Wang et al., 2010). In particular, adaptation switches the pathway 

from conveying information for detecting novel features in the environment, to 

conveying information for discerning fine details (Lesica and Stanley, 2004; Moore, 

2004; Wang et al., 2010), reminiscent of the “searchlight hypothesis” where detection 

mode was proposed for a state with thalamic bursting and a discrimination mode was 

speculated for a state with thalamic tonic firing (Crick, 1984; Sherman, 2001ab; Swadlow 

and Gusev, 2001). In rodent somatosensation, it has also been speculated that the 

repetitive stimulation of the whisker (i.e. sensory adaptation) may resemble the function 

of active whisking and thus primes the cortex for stimulus discrimination, while a still 

whisker in a quiescent state without sensory adaptation may be primed for detecting a 

stimulus (Moore, 2004).  

 

Specific to spatial discrimination in somatosensation, human psychophysical studies have 

shown that adaptation heightens spatial acuity in tactile discrimination tasks (Goble and 

Hollins, 1993; Tannan et al., 2006; Vierck and Jones, 1970). Electrophysiological studies 

qualitatively show a spatially constrained cortical representation of repetitive stimuli in 

addition to suppressed magnitude in cortical response. This spatial constraint has been 

proposed as a potential mechanism for enhanced acuity (von Békésy, 1967; Lee and 

Whitsel, 1992; Moore, 2004; Moore et al., 1999; Sheth et al., 1998). However, animals 
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form perceptions and make decisions on a moment-to-moment basis. As previously 

mentioned, the cortical response to the same stimulus is variable. Adaptation has also 

been shown to change the trial-to-trial covariability (noise correlation) in cortical activity 

(Adibi et al., 2013). Thus, the trial-averaged representation shown in these studies is not 

sufficient to convey the information about the stimulus relevant to real-time behavior 

(Averbeck et al., 2006). Furthermore, given that the brain state exhibits a multitude of 

mechanisms and effects, it is insufficient to infer the perceptual consequence of a 

stimulus simply based on the average size of cortical response. In Chapters 2 and 3, I 

examine the variability and correlation change following adaptation and explicitly test on 

single-trial basis, the hypothesis of detection and spatial discrimination trade-off during 

sensory adaptation.  

 

1.3 Intrinsic brain state and its relationship to sensory evoked response 

The relationship between spontaneous activity and sensory-evoked response in the cortex 

is complex and dynamic. Interpreting the stimulus under the context of the spontaneous 

activity has generally been predictive of the sensory evoked response. For example, pre-

stimulus activity has been shown to interact negatively with tasked-evoked activity in 

human fMRI (He, 2013); the spontaneous activity measured with VSD can at least 

partially explain the variability in the evoked response (Arieli et al., 1996); baseline fMRI 

activity has been shown to predict somatosensory perception in humans (Boly et al., 

2007); the frequency content and synchrony in the spontaneous activity can predict 

sensory evoked response in anesthetized rats (Curto et al., 2009).  

 

In particular regard to the synchronized and de-synchronized cortical states, it has been 

proposed that in the synchronized state, cortical cells alternate between depolarization 

termed UP state, and hyperpolarization (or silence) termed DOWN state. In the DOWN 
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state, an excitatory input engages a recurrent network and transitions the cortex into UP 

state. The occurrence of UP states could be stochastic (or at least the mechanisms for the 

timing of UP state is not yet clear) because the transition into UP states is triggered by an 

excitatory volley that can occur spontaneously (McCormick et al., 2015). Over time, 

refractory mechanisms build up and eventually the network is unable to maintain activity 

and falls silent (McCormick et al., 2015). During DOWN state, a sensory stimulus evokes 

a larger cortical response than in UP state (Li et al., 2009; Petersen et al., 2003b). 

Therefore, in addition to the frequency of the spontaneous activity, the sensory evoked 

response also depends on the phase of spontaneous activity.  

 

Under anesthesia, the cortex is largely in the synchronized state, but can spontaneously 

transition into the de-synchronized state (Clement et al., 2008; Curto et al., 2009). Along 

with increased thalamic tonic firing, neuromodulators are another major influence on 

brain state. Acetylcholine (ACh) from the brainstem laterodorsal tegmentum (reticular 

formation) (Castro-Alamancos and Oldford, 2002; Steriade et al., 1990; Williams et al., 

1994) and norepinephrine (Constantinople and Bruno, 2011) facilitate wakefulness and 

can thus produce the de-synchronized state. Multiple neuromodulatory systems and 

metabotropic glutamate receptors are thought to suppress low frequency fluctuations by 

promoting tonic firing in pyramidal cells, reducing intracortical recurrent excitatory 

synaptic strength, and depolarizing layer 5 pyramidal cells, which are currently thought to 

be the origin of the fluctuations (Harris and Thiele, 2011). These mechanisms help 

suppress the bursts and recurrent excitation that leads to fluctuation of UP and DOWN 

states in the synchronized state (Harris and Thiele, 2011).  

 

In chapter 4, under controlled anesthesia and without behavioral influences, I examine the 

intrinsic brain states and the sensory evoked response under these states in the primary 

sensory cortex.  
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1.4 Top-down control of brain state 

A final major category of influence on brain state is top-down modulation from behavior, 

cognitive functions, or inputs from other cortical areas, natural or artificial. A prominent 

behavioral influence is the level of arousal, which was indicated in the early discovery of 

EEGs in sleep and wakefulness (Steriade et al., 1993). Since then, the frequency change 

with arousal has been shown on a finer gradient and a broader spectrum. Beyond 

wakefulness, high-frequency, low-amplitude EEG or LFP and cortical desynchronization 

are present in active behavior, such as walking and exploring, and in alert or attentive 

animals; and low-frequency, high-amplitude fluctuations in EEG or LFP are also present 

in quiescent and immobile animals, even when they are awake (Castro-Alamancos, 2004; 

Crochet and Petersen, 2006; Poulet and Petersen, 2008).  

 

Particularly in rodents, active whisking has been shown to place the cortex into a de-

synchronized state, and has been hypothesized to be a mode of active sensing that 

enhances tactile discrimination (Moore, 2004). During active whisking, the EEG or LFP 

displays high frequency fluctuations and the cortical response to an external stimulus is 

suppressed (Crochet and Petersen, 2006; Fanselow and Nicolelis, 1999; Poulet and 

Petersen, 2008; Poulet et al., 2012). Although whisking and sensory adaptation share 

commonalities, particularly cortical suppression and enhancement in tactile 

discrimination, whisking has exclusively top-down and internal mechanisms because the 

effect of whisking on brain state persists after the severing of afferent nerves (Fee et al., 

1997; Hentschke et al., 2006; Poulet et al., 2012). Furthermore, stimulation of primary 

motor cortex area related to whiskers (vM1) can also induce de-synchronized state in S1 

(Zagha et al., 2013). The mechanisms generating active whisking are still highly debated 

and clearly bear differences from passive rhythmic whisker movements such as those 
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during sensory adaptation. It is nonetheless possible that the downstream 

neurophysiological effects of active and passive whisker movements could converge, 

producing the same cortical representation of the stimulus, although the differences in the 

perception of the stimulus and possible awareness of the brain state modulated by 

different mechanisms remain to be investigated.  

 

1.5 Experimental approach 

To explore the effect of sensory adaptation on the detectability and the spatial 

discriminability of the stimulus, I employ voltage-sensitive dye (VSD) imaging in the 

anesthetized rat vibrissa pathway and rely on information theory to quantify the 

detectability and discriminability of a stimulus. 

1.5.1 The rat vibrissa pathway 

Akin to humans sensing the physical environment using our fingers, rodents use their 

whiskers, or facial vibrissae, to survey their surroundings. In the laboratory environment, 

rats have demonstrated the ability to perform a wide variety of tactile tasks, such as 

object location, texture discrimination, and aperture assessment (Arabzadeh et al., 2004; 

Carvell and Simons, 1990; von Heimendahl et al., 2007; Krupa et al., 2001; Petersen et 

al., 2001; Ritt et al., 2008; Wolfe et al., 2008). Accompanying this rich repertoire of 

behavioral tasks is the discrete nature the vibrissa pathway, making the rat an 

extraordinary model for somatosensory processing. There are columns of neurons 

(barrels) in the primary somatosensory cortex (S1) whose topography matches that of the 

whiskers on the face such that each whisker deflection evokes the strongest response in 

its corresponding barrel, termed the primary barrel (Woolsey and Van der Loos, 1970). 

Figure 1.2A illustrates this sensory system.  
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Figure 1.2 Voltage-sensitive dye imaging of the rat barrel cortex in vivo.  

A. The rat vibrissa pathway is a well-suited model for somatosensory processing, as the 

primary cortical columns (barrels) are topographically mapped to the whiskers on the 

snout. Each whisker deflection evokes the strongest response in its corresponding barrel 

(primary barrel).  

B. In the anesthetized rat, computer-controlled piezoelectric actuators stimulated the 

whiskers while the VSD camera system simultaneously collected the fluorescence signal 

from layer 2/3 of the primary somatosensory cortex.  
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C. An example response to a single punctate whisker deflection of 1200 °/s on whisker 

E3, averaged over 30 trials. Top of image corresponds to the medial side of the animal or 

row E; right side of the image corresponds to the posterior of the animal or arc 1. Upon 

the onset of the response at approximately 10 ms post-stimulus, the VSD (RH1691 dye) 

signal was constrained in the primary barrel-related column, but quickly spread to 

adjacent columns, and peaked at approximately 20 - 25 ms. An outline of the barrel map 

functionally registered using the responses to different whisker deflections was overlaid 

on the VSD images.  

D. The corresponding time course for the response (average fluorescence in the cortical 

columns) shown in C. The adjacent barrel-related column was the E4 column. 

 

1.5.2 Voltage-sensitive imaging 

Electrophysiology as one of the oldest techniques of recording neural activity has 

provided us with a great deal of knowledge about the brain. However, an electrode can 

only sample a single cell, or the aggregate activity of local ensembles of cells at best. 

Even the modern multi-electrode arrays such as the Utah array have limitations on spatial 

resolution (Warren et al., 2001).  

 

Voltage-sensitive imaging brings us closer to the goal of high-resolution population 

recording. Voltage-sensitive dye (VSD) is a molecule that binds to the membrane of the 

neuron, and changes its fluorescence proportionally to the change in membrane potential 

(Grinvald and Hildesheim, 2004). With wide-field imaging, VSD reports subthreshold 

population activity at both high spatial and temporal resolution. The voltage-sensitive dye 

used in this thesis, RH1691 dye molecule reports subthreshold activity at a temporal 

resolution of 5 ms and a spatial resolution of 19 um. RH1691 has been specifically 

engineered to have its excitation wavelength removed from the peak absorption of 

hemoglobin, making it much less susceptible to hemodynamics artifacts for in vivo 

studies (Shoham et al., 1999). Figure 1.2B illustrates the experimental set up.  
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Figure 1.2C shows an example of VSD imaging in barrel cortex. The signal first emerges 

at approximately 10 ms after stimulus onset, consistent with the latency in the pathway 

(Diamond and Arabzadeh, 2012; Petersen, 2007), then quickly spreads into adjacent 

columns. The approximate map of cortical columns was functionally registered onto the 

image as previously described (Wang et al., 2012) (see Methods, Chapter 2). The 

stimulus in this example was a punctate deflection of 1200 °/s in the rostral-caudal plane 

(exponential rise and decay). Figure 1.2D shows the corresponding time courses of the 

single trials and the averaged trial of the response in Figure 1.2C. The fluorescence was 

averaged within the primary and adjacent barrels. 

 

1.5.3 Detectability and discriminability as a model for information processing 

As the animal forms perception from a moment-to-moment basis, it is imperative to 

quantify the information carried about the stimulus on a trial-to-trial basis. As a model for 

behaviorally relevant information carried about the stimulus, detectability and the 

discriminability of the stimulus were quantified using detection theory (Macmillan and 

Creelman, 2004). Detectability is essentially the separability of the response distribution 

from the noise distribution. Discriminability is the separability of two response 

distributions to their respective stimulus. In general, the distance between the two 

distributions is determined by the distance between their means, their overall variance, 

and, in multi-dimension cases, their covariance. It can be equivalently quantified using 

multiple techniques, most commonly used are the discriminability index d‟, likelihood 

ratio test (LRT), and receiver operating characteristic (ROC) curve. Figure 1.3 illustrates 

the effect of mean and variance on the separability of two distributions in a simple one-

dimensional response distribution case.  
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Figure 1.3 A cartoon illustration of the effect of mean and variance on separability 

of two response distributions.  

A. Cartoon illustration of the probability density function of the response to two different 

stimuli.  

B. An increase in the difference in the means of the distributions further separates the 

distributions.  

C. A decrease in the variance of the distribution can also decrease the overlap between 

the two distributions. 

 

1.6 Organization of the thesis  

This thesis examines, under different dynamic states of the primary sensory cortex, how a 

stimulus is differentially encoded. Chapter 2 examines how sensory adaptation improves 

spatial discriminability at the expense of detectability on single trial basis. Chapter 3 

explores the continuum of brain states modulated through the parameters of adaptation. 

Chapter 4 examines the information about internal brain state carried by the spontaneous 

activity and its relationship with sensory-evoked activity. Chapter 5 discusses the 

findings in relation to the brain state literature and future directions. 
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CHAPTER 2  Sensory adaptation, a bottom-up modulation of brain 

state 

A modified version of this chapter was published as a research article: 

Ollerenshaw, D. R., Zheng, H. J. (co-first author), Millard, D. C., Wang, Q., & Stanley, 

G. B. (2014). The Adaptive Trade-Off between Detection and Discrimination in Cortical 

Representations and Behavior. Neuron, 81(5), 1152-1164. 

 

Portions of this work were presented in poster form at the following: 

Zheng, H. J. V., Wang, Q., Ollerenshaw, D. R., Millard, D. C., & Stanley, G. B. 

Adaptation Improves Spatial Localization of Stimuli in Rat Primary Somatosensory 

Cortex.  

COSYNE meeting, Salt Lake City, UT, 2012.  

SfN meeting, Washington D.C., 2011. 

 

The work presented in this chapter was completed jointly with Douglas R. 

Ollerenshaw. Figures and text that represent behavior work completed by DRO are 

attributed below. 

2.1 Introduction 

A key process that modulates the state of the brain through bottom-up input is sensory 

adaptation. When facing repetitive and persistent stimuli, neurons, particularly cortical 

neurons decrease their firing rate on the time scale of hundreds of milliseconds. This 

cross-modal and ubiquitous property, known as rapid sensory adaptation, has long been 

known to shape the nature of information flow in sensory pathways, leading to changes in 

the perception of the stimulus (Ahissar et al., 2000; Chung et al., 2002; Fairhall et al., 

2001; Higley and Contreras, 2006; Khatri et al., 2009; Maravall et al., 2007; Goble and 
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Hollins, 1993; Tannan et al., 2006; Vierck and Jones, 1970). Importantly, sensory 

adaptation has been shown to share common effects with the active brain states signified 

by high-frequency, small-amplitude spontaneous cortical fluctuation, such as active 

whisking and alertness. Both adapted state and active state are linked to thalamocortical 

(TC) synaptic depression and suppressed cortical representation of an external stimulus 

(Castro-Alamancos, 2004; Castro-Alamancos and Oldford, 2002; Chung et al., 2002; 

Poulet and Petersen, 2008; Poulet et al., 2012). Separately, in studies without the 

measurement of cortical fluctuation frequency, whisking or task-engaged animals also 

exhibit cortical suppression (Fanselow et al., 2001; Otazu et al., 2009). While active 

whisking is thought to improve tactile sensation (Kleinfeld et al., 2006; Moore, 2004), a 

number of studies suggest complex and important changes in coding properties in 

response to sensory adaptation that serve to improve information transmission in the face 

of complex inputs (Barlow, 1961; Clifford et al., 2007; Fairhall et al., 2001; Maravall et 

al., 2007; Moore, 2004; Moore et al., 1999; Sclar et al., 1989). This chapter examines the 

change in brain state following sensory adaptation, in terms of the cortical representation 

of an external stimulus, the modulation of thalamic activity, the information conveyed 

about the stimulus from the perspective of an ideal observer of the anesthetized cortex, 

and perceptual consequences in awake and behaving animals. 

 

Thalamic activity has been shown to play a major role in modulating the cortical state. 

High-frequency fluctuations and desynchronization in the cortex, often associated with 

active behavior such as whisking, are linked to the depolarization and tonic firing of the 

thalamus (Castro-Alamancos, 2002; Harris and Thiele, 2011; Hirata and Castro-

Alamancos, 2010; Poulet et al., 2012). In the visual pathway, it has been hypothesized 

that the thalamus serves to gate information flow, switching between bursting and tonic 

firing dynamics that would facilitate detection of transient visual inputs at the level of 

cortex and those that would enable transmission of details of the visual input required for 
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discrimination (Crick, 1984; Sherman, 2001a). In the specific context of the rodent 

vibrissa system, Moore (2004) hypothesized a trade-off between detection and 

discrimination mediated by the frequency content of tactile input. Relatedly, adaptation 

has been shown to be accompanied by thalamic desynchronization (Temereanca et al., 

2008; Wang et al., 2010), and thalamic tonic firing (Whitmire et al., submitted). 

 

In the context of spatial discriminability, perceptual studies in humans have demonstrated 

that sensory adaptation can lead to improved discriminability of tactile stimuli applied to 

the skin (Goble and Hollins, 1993; Tannan et al., 2006; Vierck and Jones, 1970). 

Separately, a number of studies have investigated the spatial sharpening of cortical 

representations in somatosensory cortex in response to repetitive, ongoing sensory 

stimulation (Kleinfeld and Delaney, 1996; Lee and Whitsel, 1992; Moore et al., 1999; 

Sheth et al., 1998; Simons et al., 2005; Tommerdahl et al., 2002), posited as a potential 

mechanism for enhanced spatial acuity (Lee and Whitsel, 1992; Moore et al., 1999; 

Vierck and Jones, 1970). The reductions in overall cortical activation, coupled with 

spatial sharpening of the cortical response, suggest a similar sensory trade-off: 

detectability, or maximum sensitivity to unexpected tactile inputs, can theoretically be 

sacrificed after adaptation to a stimulus in return for improved ability to discriminate the 

spatial location of the stimulus (Moore, 2004; Moore et al., 1999). To what extent these 

trade-offs exist behaviorally or electrophysiologically, however, is not clear, and the 

precise relationship between psychophysical findings and the underlying mechanisms 

responsible for these observations is unknown. 

 

Here, we utilized the rodent vibrissa pathway to directly test the adaptive trade-off 

between detection and discrimination in behavior to quantify the relevant information 

content in cortical representations that may underlie the behavior and to evaluate the 

adaptive effects on the thalamic inputs as a potential mechanism. Using voltage-sensitive 
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dye (VSD) imaging of the cortex in anesthetized rats, we found that the reduction in the 

magnitude and sharpening of the cortical response resulted in enhanced spatial 

discriminability at the expense of detectability for an ideal observer of cortical activation. 

In a parallel set of behavioral experiments, rats were trained in vibrissa-based detection 

and spatial discrimination tasks, in which adaptation led to enhanced discrimination 

performance at the expense of stimulus detectability. Recordings in the ventroposterior 

medial (VPm) nucleus of the thalamus of awake animals further revealed a reduction in 

spike count and timing precision with adaptation. Together, these results provide direct 

evidence for the change in cortical dynamics and perception modulated through bottom-

up sensory adaptation, and that the underlying adaptive regulation of thalamic input may 

play an important mechanistic role. 

 

2.2 Methods 

2.2.1 Surgery 

All procedures were approved by Institutional Animal Care & Use Committee at Georgia 

Institute of Technology and in agreement with the National Institutes of Health 

guidelines. Nine female albino rats (Sprague-Dawley; 250-330g) were sedated with 4% 

vaporized isoflurane, then anesthetized with pentobarbital sodium (50 mg/kg i.p., initial 

dose). Supplemental doses were administered as needed to maintain a surgical level of 

anesthesia, confirmed by monitoring heart rate, respiration and eyelid/pedal reflexes to 

adverse stimuli (toe or tail pinch). Following the initial sodium pentobarbital dose, the 

animal was mounted on a stereotaxic device (Kopf Instruments, Tujunga, CA) on a 

vibration isolation table. Atropine (0.09 mg/kg, s.c.) was administered subcutaneously to 

keep the lungs clear of fluid. Lidocaine was injected subcutaneously into the scalp before 

the initial incision on the head. In all experiments, saline was administered (2 

mL/kg/hour) to prevent dehydration. Body temperature was maintained at 37°C by a 
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servo-controlled heating blanket (FHC, Bowdoinham, ME ). After the midline incision on 

the head, skin and tissue were resected and connective tissue was removed. A craniotomy 

(approximately 3 mm x 4 mm) was drilled on the left hemisphere over the primary 

sensory cortex (stereotaxic coordinates: 0-4 mm caudal to the bregma, and 4-7 mm lateral 

to the midline; Paxinos and Watson, 2007). The dura was left intact. A dental acrylic dam 

was constructed around the craniotomy. At the end of the surgical procedures, a light 

level of anesthesia was maintained with pentobarbital sodium. The animal was 

euthanized with an overdose of pentobarbital sodium solution after VSD imaging. 

 

2.2.2 Staining  

The dura was cleaned using a gentle flow of saline (0.9%), then dried with a gentle air 

blow for about 10-15 minutes or until it appeared “glassy” (Lippert et al., 2007). Voltage 

sensitive dye (VSD RH1691, Optical Imaging) was diluted in saline to approximately 1.5 

mg/mL. The dye solution (~200 µL) was carefully placed into the dam using a micro-

pipette. The craniotomy was covered to prevent the dye from photo-bleaching. The dye 

solution in the dam was circulated and replenished with fresh dye solution every 5-10 

minutes (Lippert et al., 2007). After approximately 2 hours of staining, the unbound dye 

was washed out with saline. Saline was applied to the brain surface after washing. 

Imaging was performed through saline on the brain surface. Saline was replenished 

throughout the experiment.  

 

2.2.3 Optical imaging 

The excitation light source was a 150W halogen lamp filtered at 621-643nm. The 

fluorescence signals were collected with a MiCam02 camera system (BrainVision, 

Japan). The camera was focused onto layer 2/3, at approximately 300 µm below the pia 

surface (Petersen et al., 2003a). The frame was 184x123 pixels, at 200 Hz. Prior to each 
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trial, a background image of the craniotomy (F0) was recorded. The objective lens was 1x 

and the condenser lens was 0.63x. The magnification was 1.6x. The field of view was 3.5 

mm x 2.3 mm and the pixel size was 18.9 µm x 18.9 µm. All individual frames of 25-50 

single trials were recorded. 

 

2.2.4 Vibrissa stimulation 

A multi-layered piezoelectric bending actuator (range of motion: 1 mm, bandwidth: 200 

Hz; Polytec PI, Auburn, MA) generated vibrissa deflections. Each vibrissa was 

individually deflected in the rostral-caudal plane in a saw-tooth waveform of 17 ms in 

duration (τ = 2 ms). Each trial had 200 ms of pre-stimulus recording. In non-adapted 

trials, a single, strong deflection (800-1500 °/s) was delivered to either one of two 

adjacent vibrissae. In adapted trials, the same probe was preceded by a 1 second, 10 Hz 

pulsatile adapting stimulus. Stimulation protocols were presented in a random order and 

repeated 50 times with a minimum of 3.8 s of rest between trials.  

 

2.2.5 Barrel mapping  

A barrel map was obtained from cytochrome c oxidase staining of one animal. The 

barrels were outlined in Neurolucida software (MBF Bioscience,Williston, VT). This 

barrel map serves as a generic template for all other animals. In previous studies, the 

barrel map was found to be relatively well conserved across animals.  For each animal, 

the initial VSD responses to several individual whisker deflections were superimposed to 

form a response map, as the initial responses are relatively constrained within the primary 

barrel (Petersen et al., 2003a). The template barrel map was then linearly scaled, 

translated, and/or rotated, so that the centroids of the responses to several individual 

whisker deflections and the geometric centers of the barrels produce minimal squared 

errors. 
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2.2.6 Data analysis  

All analyses of VSD data were conducted in Matlab, and based on the change in the 

fluorescence relative to the background, or ∆F/F0. Specifically, the VSD frames were 

divided by the background image F0 in a pixel-wise fashion. Additionally, to account for 

non-stationarities in the imaging data, a baseline frame was subtracted from all frames to 

ultimately form ∆F. For non-adapted trials and pre-stimulus frames, the baseline was the 

average of the first 50 ms of pre-stimulus frames. For adapted trials, the baseline was the 

first 50 ms immediately preceding the probe. The resulting frames were divided by the 

background F0, to produce our primary measure ∆F/F0. The response frames were time-

averaged from the typical onset to peak frame of cortical response (10-25 ms post-

stimulus) for all stimulus conditions. Numerous studies have asserted that sensory 

detection can be modeled as temporal integration of the ongoing neural response 

(Carpenter 2004; Chen et al. 2008; Cook and Maunsell 2002; Fridman et al. 2010; Gold 

and Shadlen 2007; 2001; Huk and Shadlen 2005; Mazurek et al. 2003; Roitman and 

Shadlen 2002; Schall and Thompson 1999; Smith and Ratcliff 2004; Stüttgen and 

Schwarz 2010). Therefore, I integrated from a typical VSD signal onset time of 10 ms 

(consistent with the cortical response latency in this pathway), to a typical VSD signal 

peak time of 25 ms. The pre-stimulus frames (excluding those used as the baseline) 

within each trial were also time-averaged every 4 frames. 

 

2.2.7 Ideal observer analysis  

Response variables: For each animal, two regions of cortex were defined so that each 

highlighted the center of the response to the corresponding whisker stimulation. The 

region corresponding to whisker 1 stimulation was referred to as Region 1 and so on. For 

trials from whisker 1 stimulation, Region 1 was the center of the cortical response to its 
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primary whisker stimulation (hereon referred to as the Primary Region), Region 2 was 

that to the adjacent whisker stimulation (hereon referred to as the Adjacent Region). For 

whisker 2 stimulation trials, Region 2 was the Primary Region, and Region 1 was the 

Adjacent Region. To obtain the region for each whisker stimulation, the trial-averaged 

non-adapted response was spatially filtered with a 5x5 pixel (approximately 0.1 mm x 0.1 

mm) median filter and a 5x5 pixel average filter, then fitted with a two-dimensional 

Gaussian function. The corresponding activation region was defined as the 98% height 

contour of the Gaussian fit. The two regions were non-overlapping and approximately the 

size of a cortical column (~300-500 µm in diameter), (Bruno et al., 2003). Once defined, 

the two regions were applied to the unfiltered, single-trial frames. The average 

fluorescence within each region was defined as a response variable.  

 

Detection: The primary region response variable was defined as the decision variable 

(DV) for this analysis. For each of the three cases, pre-stimulus noise, non-adapted 

response, and adapted response, the DVs from all single trials were binned and fit with a 

Gaussian function to represent the probability mass function. The noise distribution was 

formed by the decision variables extracted from all pre-stimulus frames. Detectability 

was measured using a standard detection theory variable d‟, which quantifies the 

separability between two distributions, for both the adapted and non-adapted cases 

relative to the noise distribution. 

 

Discrimination: For all single trials given whisker 1 stimulation, both response variables 

from Region 1 (R1|W1) and Region 2 (R2|W1) were extracted and plotted as a cluster, and 

the response variables from whisker 2 stimulation were plotted as another cluster. Linear 

Discriminant Analysis (LDA) was used to optimally separate the two clusters (Fisher 

linear discriminant, MATLAB). The response variables were then projected onto the axis 

orthogonal to the LDA line and formed two histograms and each was fitted a Gaussian 
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probability distribution. The projected response variable is defined as the decision 

variable. The separation of the decision variable distributions, measured as d‟, was used 

as the discriminability measure. 

 

2.3 Results 

2.3.1 Adaptation spatially constrains the cortical response 

Voltage sensitive dye (VSD) imaging was employed in the cortex of anesthetized rats to 

capture sub-threshold activity of a large population of neurons in cortical layer 2/3 

(Kleinfeld and Delaney, 1996; Petersen et al., 2003a), as computer-controlled 

piezoelectric actuators deflected the vibrissae (Figure 1.2). An anatomical barrel map was 

functionally registered to the images for illustration purposes (Wang et al., 2012). The 

cortical activation is reported as the percent change in fluorescence relative to the 

background level (%∆F/F0). The VSD signal initially appeared localized in the principal 

barrel at 10 ms after stimulus onset, quickly spread to neighboring barrels, peaked at 

approximately 20-25 ms, then gradually decayed back to baseline at approximately 100 

ms, consistent with previous findings (Petersen et al., 2003a; Wang et al., 2012). 

Subsequent analyses were based on the time-averaged response from the typical onset to 

peak time (10-25ms). 

 

Given the spatial spread of activation for a single whisker deflection, one immediate 

question is to what extent a single whisker stimulus activates adjacent barrels. An 

example of typical responses to separate deflections of two adjacent whiskers is shown in 

Figure 2.1A. Shown is the trial-averaged VSD response to Whisker 1 (top) or Whisker 2 

(bottom) stimulation. Each of these responses was fit with a 2D Gaussian function, the 

half-height contour of which was superimposed on the VSD image, and combined on the 

right. In the absence of any prior deflection of the vibrissae, the cortical response was 
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recorded in what was referred to as the „non-adapted‟ state (Figure 2.1A). Following an 

ongoing, adapting stimulus, the cortical activation was recorded in response to the same 

test probe stimulus in the „adapted state‟ (Figure 2.1B). Note that the adapting stimulus in 

this case was a sequence of pulsatile (sawtooth) whisker deflections at a repetition rate of 

10Hz. Qualitatively, the non-adapted responses were strong in both magnitude and spatial 

spread (Figure 2.1A), with significant spatial overlap, while the adapted responses were 

smaller in magnitude and spatial spread, and showed much less spatial overlap (Figure 

2.1B). This suggests that from the perspective of an ideal observer of the cortex, the 

detectability of the test probe stimulus may degrade due to the decrease in magnitude but 

the spatial discriminability of the stimulus may improve due to the spatial constraint. 

However, the relationship between average response and quantitative information 

conveyed trial-to-trial is not trivial (Averbeck et al., 2006; Pouget et al., 1999). 

 

Figure 2.1 Adaptation spatially constrains the cortical response.  

A. The cortical responses to a single-whisker stimulation in the absence of a preceding 10 

Hz adapting stimulus. Whisker 1 (W1) and whisker 2 (W2) were adjacent to each other 

on the snout and stimulated separately. Images were averaged over 50 trials. The black 
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ellipses on the images were half-height contours of the two-dimensional Gaussian fits to 

the images. On the right is the superposition of the Gaussian contours.  

B. In contrast, the same stimulus following a 10 Hz adapting stimulus evoked a cortical 

response that was significantly reduced in magnitude and in area. 

 

2.3.2 Adaptation degrades stimulus detectability for an ideal observer 

The detectability of a stimulus was measured against pre-stimulus noise on a single trial 

basis in the non-adapted and adapted states using optimal detection theory (Duda et al., 

2001; Macmillan and Creelman, 2004). Each single-trial cortical response was 

represented as a decision variable (DV), used by the ideal observer to classify each trial 

as signal or noise. This was done by averaging the measured neural activity within an 

approximately barrel-sized region of interest (ROI) 10-25 ms after stimulus onset. Note 

that the results were not dependent on absolute ROI size, as long as it remained within 

the range of an individual cortical column (~300-500 µm in diameter). For each case, the 

DVs over all 50 trials were binned, and a Gaussian probability function was fit. Figure 

2.2A shows a typical example of the noise (shown in black) and signal distributions in the 

non-adapted (grey) and adapted (orange) states (same ROI for all). Corresponding 

examples of trial-averaged VSD responses are shown for each of the three cases with the 

decision region overlaid in black. The adapted distribution lies closer to the noise than 

does the non-adapted, implying a reduction in detectability with adaptation. Detectability 

was measured using a standard detection theory variable d‟, which quantifies the 

separability between two distributions. There was a significant decrease in detection 

performance (d‟ between signal and noise) after adaptation (Figure 2.2B, non-adapted d‟: 

1.24 +/- 0.076; adapted d‟: 1.05 +/- 0.078; p < 0.005, n = 18, paired t-test). Results were 

very similar using a related measure derived from the receiver-operating characteristic 

(ROC) curve (Figure 2.2C & D). 
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Figure 2.2 Ideal observer analysis - adaptation degrades detection.  

A. A region of interest (ROI) approximately the size of a cortical column (300-500 µm in 

diameter) was defined as the 98% height contour of the 2D Gaussian fit to the trial-

averaged non-adapted response. The insets show the corresponding trial-averaged images 

for each case (noise, non-adapted, and adapted), with the ROI outlined in black (same in 

all cases). The average fluorescence within the ROI was extracted from each single trial 

as a decision variable (DV).  

B. The d‟ value, a measure of the separation of the signal and noise distributions, 

decreased following adaptation (p < 0.005, n = 18, paired t-test).  

C. The performance of the observer relies on the use of a threshold around which to 

classify the response as belonging to signal or to noise. The separation of the signal 

distributions in panel A from the noise was quantified using a receiver-operating 

characteristic (ROC) curve, which evaluates the performance over all threshold choices.  

D. The summary of the area under the ROC (AUROC) across all datasets, demonstrating 

that the overall detection performance decreased after adaptation (non-adapted AUROC: 

0.80 +/- 0.015; adapted AUROC: 0.76 +/- 0.016; p < 0.005, n = 18, paired t-test). Note 

that this measurement takes into account all possible choices of threshold, but that for 
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intermediate ranges of threshold choice, there was as much as a 30% reduction in the hit 

rate for a given false alarm rate. 

 

2.3.3 Adaptation enhances stimulus discriminability for an ideal observer 

The ideal observer analysis was extended to measure changes in spatial discriminability 

resulting from deflections of adjacent vibrissae in the non-adapted and adapted states. 

Based on the cortical response to a single whisker deflection, the observer was tasked 

with identifying which of two possible whiskers caused it. The ROIs for the two whiskers 

were defined as described above and were applied to all single trials. After a deflection of 

whisker 1, the response in the corresponding ROI (R1|W1) was measured, as well as the 

response in the adjacent ROI (R2|W1). Figure 2.3A shows the response to each whisker 

deflection, with the two ROIs outlined in black. For a given whisker deflection, the 

corresponding ROI is shown in bold. 

 

Figure 2.3B shows an example of all single-trial variables for a single dataset. Each point 

represents a single trial, with responses from deflections of whisker 1 shown in green 

(closed circles) and those from deflections of whisker 2 shown in red (open circles). 

Trials were excluded from analysis when the response fell below the „detection 

threshold‟, which corresponded to a detection false alarm rate of 10%, based on the false 

alarm rate from related behavioral studies (Ollerenshaw et al., 2012; Stüttgen and 

Schwarz, 2008). The extent to which these two clusters can be discriminated determines 

how well an observer could correctly identify which whisker led to a particular cortical 

response. Linear Discriminant Analysis (LDA) was used to determine the line that 

maximally separated the two clusters, shown as the solid black line in Figure 2.3B. The 

raw variables were projected onto the line orthogonal to the LDA line and the separability 

of the two probability distributions, measured using the standard detection theory variable 

d‟, was used as the discrimination metric. 
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Figure 2.3C shows the adapted case, where the two variable clusters became more 

separated, resulting in a larger separation of the probability distributions. Due to the 

simultaneous reduction in signal amplitude, a higher percentage of trials fell below the 

detection threshold and were subsequently eliminated from the analysis. Discriminability 

was significantly improved following adaptation (Figure 2.3D, non-adapted d‟: 1.9 +/- 

0.24; adapted d‟: 2.6 +/- 0.26; p < 0.05, n = 9 animals, paired t-test). Similar results 

emerged from a likelihood ratio test and results were relatively insensitive to chosen 

parameters. 

 

Figure 2.3 Ideal observer analysis - adaptation improves spatial discriminability.  

A. The same method described in the detection analysis was used to derive the ROI for 

each of the two whisker stimulations (shown in bold ellipse). Both ROIs were applied to 
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all single trials. Two responses were calculated for each single trial: the average 

fluorescence within the principal barrel area (bold ellipse), and that within the adjacent 

barrel area (thin ellipse).  

B. Responses above the detection threshold in the non-adapted case were grouped by 

whisker stimulation and separated using Linear Discriminant Analysis (LDA). The 

decision variable was defined as the projection of the response onto the axis orthogonal to 

the LDA line. The d‟ separation measure was then calculated for the two probability 

distributions of the decision variables. The d‟ in this example was 1.7.  

C. Same analysis as in B for the adapted case. The d‟ in this example was 3.2.  

D. Discrimination performance (d‟ of DV probability distributions) of the ideal observer 

significantly improved following adaptation (p < 0.05, n = 9, paired t-test). All error bars 

represent +/- 1 standard error of the mean.  

E. Discrimination performance using the likelihood ratio test also significantly improved 

following adaptation. The performance in the non-adapted case was 80.6% +/- 3.1%. In 

the adapted case, the observer correctly classified 88.6 +/- 2.6%, again showing that 

discriminability was significantly improved for the ideal observer following adaptation (p 

< 0.05, n = 9, paired t-test). Error bars represent +/- 1 standard error of the mean. 

 

2.3.4 Adaptation degrades stimulus detectability for awake, behaving animals 

To directly test the perceptual effects of sensory adaptation, both a detection and spatial 

discrimination task were carried out using a separate set of head-fixed rats. The detection 

task was modeled closely off of detection tasks published previously by our lab and 

others (Ollerenshaw et al., 2012; Stüttgen and Schwarz, 2008), with the exception that the 

stimulus to which animals were trained to respond was preceded by a 12 Hz sinusoidal 

adapting stimulus on a subset of trials (Figure 2.4A). Each trial in the task was initiated 

by a 3 s tone, during which an adapting stimulus was presented randomly on half of the 

trials. A variable velocity stimulus was presented on a uniformly varying time interval 

between 0.5 and 2.5 s after the end of the tone, and animals had a 1 s window following 

the stimulus in which to emit a lick to receive a water reward. 

 

Figure 2.4B shows the psychometric curves that resulted from the behavioral detection 

experiments for all animals. The black dashed line labeled as “chance” indicates the 
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response probability on catch trials, in which a deflection of a second piezoelectric 

actuator was substituted for the actuator attached to a whisker. The response probability 

on catch trials was 8.7% on nonadapted trials and 8.6% on adapted trials, which is 

consistent with the behavioral false alarm rate from similar studies (Ollerenshaw et al., 

2012; Stüttgen and Schwarz, 2008) and also demonstrates that adaptation did not lead to 

a change in response criterion for the animals. 

 

Figure 2.4 Behavioral detection thresholds are increased with adaptation (courtesy 

of DRO).                      

 

A. Detection task. A piezoelectric actuator was placed on a single whisker, and a variable 

velocity probe stimulus was presented at a randomized time. The probe was preceded by 

an adapting stimulus on 50% of trials.  

B. Combined psychometric curve for all animals for the nonadapted (gray) and the 

adapted short recovery (orange) and long recovery (blue) cases. Error bars are omitted for 

clarity. The black dashed line indicates the chance performance level.  

C. Quantification of perceptual thresholds. Each bar represents the perceptual threshold, 

measured as the 50% point of the sigmoidal fit (nonadapted to adapted short recovery: 

http://www.sciencedirect.com/science/article/pii/S0896627314000567#200019637
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p < 0.05; nonadapted to adapted long recovery: p < 0.05; paired t test, n = 4 animals). 

Error bars represent ±1 SEM. 

 

The orange curve in Figure 2.4B shows the combined psychometric curve in response to 

stimuli falling in the short recovery period (0.5–1.5 s following adaptation). The curve is 

shifted to the right relative to the nonadapted (grey) curve, indicating that a much 

stronger stimulus must be delivered to achieve the same response probability. 

Importantly, the response probability for the strongest stimulus approached that seen in 

the nonadapted case, indicating that the change in performance is not due simply to 

changes in motivational level, or confusion on the part of the animals. The blue curve 

shows the psychometric function for stimuli occurring in the long recovery period (1.5–

2.5 s following adaptation), indicating a return to baseline detection performance. 

 

The observed decrease in detectability was quantified by measuring the change in the 

perceptual threshold, defined as the 50% point on the psychometric curve. Figure 2.4C 

shows the average threshold (232 ± 35°/s, nonadapted), which is very similar to that seen 

in a similar single-whisker detection task (Stüttgen and Schwarz, 2008). The average 

threshold increased to 1,057 ± 204°/s in the adapted short recovery state and then 

decreased to 611 ± 81°/s in the adapted long recovery state. Thus, detectability was 

reduced following adaptation to a sensory stimulus, with a 4-fold increase in stimulus 

velocity required to achieve the same threshold performance level (p < 0.05, n = 4, paired 

t test). Performance began to recover with timescales on the order of a few seconds, 

though detection thresholds remained significantly above those in the nonadapted state (p 

< 0.05, n = 4, paired t test). Reaction times were also observed to increase following 

adaption. 
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2.3.5 Adaptation improves spatial discriminability in awake, behaving animals 

 

The same animals were then trained on a two-whisker go/no-go spatial discrimination 

task (Figure 2.5A). The S+ or “go” whisker remained the same as in the detection task. 

However, a second piezoelectric actuator was attached to a second neighboring whisker, 

which was deemed the S− or “no-go” whisker. The task proceeded as it had during the 

detection task, with the exception that on a given trial, the stimulus was randomly chosen 

as either the S+ or S− whisker with equal probability. To avoid cueing the animal as to 

which whisker would be stimulated, both whiskers were deflected together during the 

adaptation phase of the trial. The velocity of the probe stimulus remained fixed at 

1,500°/s. Animals were rewarded for responding to the S+ stimulus as before but were 

penalized with a 5–10 s timeout paired with the house lights when they responded to the 

S− stimulus. 
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Figure 2.5 The spatial discrimination performance of the animals is improved with 

adaptation (courtesy of DRO). 

A. Discrimination task. A second piezoelectric actuator was introduced on a nearby 

whisker. The task proceeded as in the detection task, with the exception that on a given 

trial either the S+ (go whisker) or the S− (no-go) whisker was deflected with equal 

probability using a fixed suprathreshold velocity. Animals were rewarded as before for 

responses to the S+ stimulus but were penalized with a timeout for responses to 

deflections of the S− whisker.  

B. Raw response probabilities. Response probabilities to S+ and S− stimuli are shown in 

green and red. From top to bottom, each pair of bars represents the nonadapted state, the 

adapted short recovery state, and the adapted long recovery state.  

C. Discriminability quantified as the ratio of the hit rate to the false alarm rate. 

Discriminability is measured using the data in B for the nonadapted (grey), adapted short 

recovery (orange), and adapted long recovery (blue) states (nonadapted to adapted short 

recovery: p < 0.005; nonadapted to adapted long recovery: p < 0.05; paired t test, n = 5). 

All error bars represent ±1 SEM. 

 

Figure 2.5B shows the summary of response probabilities for all trials averaged across all 

animals. Hit and false alarm rates are shown in green and red, respectively. The three 

possible states of adaptation are presented from top to bottom. As expected based on the 

detection results, the overall hit and false alarm rates decreased from the nonadapted to 

adapted short recovery state and then increased somewhat with a longer period of 

recovery. However, it is difficult to determine from these values alone whether any 

change in discrimination performance exists across the states. Figure 2.5C shows that 

when the ratio of hit rate to false alarm rate was calculated, there was a significant 

increase in discrimination performance from the nonadapted state to the adapted short 

recovery state, with the ratio increasing from 1.44 ± 0.14 to 2.11 ± 0.19 (p < 0.005, n = 5, 

paired t test). With a longer recovery period, the discrimination performance decreased 

(hit to false alarm ratio of 1.72 ± 0.17), though it remained significantly above the 

nonadapted value (p < 0.05, n = 5, paired t test), indicating that recovery was not 

complete by 2.5 s after the end of adaptation. 
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2.3.6 Adaptation of the thalamocortical circuit of awake, behaving animals 

Thalamic activity has been shown to play a key role in modulating the cortical state. We 

have previously demonstrated that adaptive shifts in cortical feature selectivity are 

strongly correlated with changes in thalamic firing and synchronization with adaptation 

(Wang et al., 2010). To uncover potential mechanisms underlying our observations here 

and to provide a link between the cortical activation and behavior, neural recordings were 

obtained from the ventroposterior medial (VPm) nucleus of the thalamus in three awake 

rats. Two of those animals were also trained to perform the detection with adaptation task 

described above. 

 

Figure 2.6 Adaptation of thalamic VPm cells in the awake animal (courtesy of DRO). 

A. The combined PSTH for all animals and recording sessions.  

B. The number of spikes per stimulus for each pulse in the 3 s, 10 Hz train of adapting 

stimuli, normalized to the spike count in response to the first pulse. After adaptation, the 

firing rate was 79.2% of its nonadapted value.  
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C. Timing precision, as measured using TC40, decreased from 0.217 ± 0.008 spikes/ms 

in the nonadapted state to 0.145 ± 0.008 spikes/ms after adaptation. The inset shows the 

first and last PSTH combined across all animals and recording sessions. All error bars 

represent ±1 SEM (all values p < 0.005, n = 56, two sided t test comparing response to 

first pulse with response to the final three pulses combined).  

 

The effect of adaptation to a pulsatile (sawtooth) stimulus at a base rate of 10 Hz can 

clearly be seen in Figure 2.6A, showing the average peristimulus time histogram (PSTH) 

of multiunit activity across all sessions of all three animals. Figure 2.6B shows the mean 

normalized spike count across all sessions, which displayed a sharp decrease in firing rate 

from the first to the second pulse in the adapting train, recovered slightly, then 

approached a steady-state level of adaptation of 79.2% of the nonadapted firing rate. 

 

Here, we used timing precision of the multiunit recording as a proxy for population 

synchrony across multiple single units within a barreloid (Butts et al., 2007; Desbordes et 

al., 2008). A quantitative measure of timing precision is the “temporal contrast,” or TC40 

metric (Pinto et al., 2000). TC40 is defined as the number of spikes representing 40% of 

the total response magnitude in a 30 ms poststimulus window, divided by the time 

required to generate the first 40% of the total response magnitude. Figure 2.6C shows that 

timing precision decreased by approximately 33%, from 0.217 spikes/ms (nonadapted) to 

0.145 spikes/ms (adapted), with the qualitative effects shown in the inset, very similar to 

the percentage reduction in synchrony measured in the anesthetized animal (Wang et al., 

2010). 

 

Taken together, the results here demonstrate that bottom-up sensory adaptation induces a 

brain state where the cortical representation of an external stimulus is suppressed, 

resulting in a trade-off of detectability and discriminability of the stimulus both in the 

ideal observer of the anesthetized cortex and in awake, behaving animals, and that the 
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thalamic activity driven by the adapting stimuli likely contributes to modulating the 

cortical state in the awake animal.   

 

2.4 Discussion 

In the presence of persistent stimulation, sensory systems have long been shown to 

exhibit various forms of rapid and reversible adaptation (Ahissar et al., 2000; Barlow, 

1961; Chung et al., 2002; Fairhall et al., 2001; Higley and Contreras, 2006). It has been 

posited that these forms of adaptation do not just represent deleterious reductions in 

firing, but instead represent fundamental changes in coding properties that likely possess 

ethological relevance. Specifically demonstrated here is the switch of cortical processing 

modes from conveying information favoring the detection of the stimulus to conveying 

information favoring the spatial discrimination of the stimulus.  

 

A wide range of studies characterizing cortical representations in the face of persistent or 

adapting stimuli (Lee and Whitsel, 1992; Sheth et al., 1998; Simons et al., 2005) have 

made qualitative inferences regarding the relationship between the observed spatial 

sharpening and the improved acuity in psychophysical studies (Tannan et al., 2006; 

Vierck and Jones, 1970). It is important to note, however, that a sharpened cortical 

response alone is not sufficient to improve discriminability, and that in many cases 

sharpened representations can lead to a reduction in information transmission (Pouget et 

al., 1999). Here, considered were both the mean, trial-averaged cortical responses, which 

provide the qualitative “sharpening” of the cortical response observed with adaptation, as 

well as the trial-by-trial cortical activation that the animal would have access to in a 

behavioral context. From the classical signal-detection perspective, the key measure of 

being able to discriminate between sensory inputs lies in the separability of the 

probability distributions of the assumed response variable. A major contribution here, 
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which goes above and beyond the previous studies where sharpened cortical responses 

have been demonstrated, is that the quantitative trial-by-trial analysis demonstrated a 

measureable enhancement in discriminability, a result which was not preordained by the 

sharpened cortical representations alone. This is even more the case given the fact that 

the adaptation unambiguously reduces neural activity in cortex even at the center of 

cortical activation, which could produce a wide range of perceptual effects. 

 

This result in the cortex is bolstered by a parallel set of behavioral experiments performed 

in our laboratory. A separate group of rats were trained in vibrissa-based detection and 

spatial discrimination tasks, in which adaptation led to enhanced discrimination 

performance at the expense of stimulus detectability. In the vibrissa system, the animal‟s 

own whisking motion has been proposed to lead to a state similar to that achieved 

through adaptation to passively applied stimuli, switching the system from a state in 

which it is more sensitive to inputs to one in which it is more selective (Moore, 2004; 

Moore et al., 1999). Under this scenario, inputs arriving when the pathway is in the non-

adapted state are more likely to generate a large cortical response, alerting an otherwise 

quiescent or inattentive animal to the presence of an unexpected stimulus (Chung et al., 

2002; Diamond and Arabzadeh, 2012; Fanselow and Nicolelis, 1999; Khatri et al., 2009; 

Sherman, 2001b), presumably at the expense of specificity. However, with active 

exploration of an object, the system is placed into an adapted state, subsequently reducing 

the magnitude of the cortical response, but improving the ability of the system to discern 

the finer features of sensory stimuli (Fanselow et al., 2001; Kohn and Whitsel, 2002; 

Maravall et al., 2007; Moore, 2004). Studies with freely behaving animals have 

demonstrated that the cortical response to peripheral inputs is reduced when the animal is 

whisking (Castro-Alamancos, 2004; Crochet and Petersen, 2006; Fanselow and Nicolelis, 

1999; Ferezou et al., 2006, 2007; Hentschke et al., 2006; Poulet et al., 2012), and 

exploratory whisking in air drives activity along the pathway (Curtis and Kleinfeld, 2009; 
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Leiser and Moxon, 2007), potentially implying that the animal‟s own self-motion serves 

to place it into an adapted state similar to that described here. Indeed, detectability is 

significantly improved in the absence of whisking (Ollerenshaw et al., 2012), potentially 

part of an active strategy by the animal to facilitate information flow in this very specific 

context. While the frequencies of the adapting stimuli used in the present study were 

chosen to fall within the natural 5-15 Hz whisking range (Berg and Kleinfeld, 2003; 

Bermejo et al., 2002; Brecht et al., 1997; Carvell and Simons, 1990), a more complete 

characterization of the effects of adaptation across a broader range of frequencies would 

be important in understanding how natural behaviors modulate the observed 

detectability/discriminability trade-off. 

 

Despite the fairly widely observed phenomenon of spatial sharpening of cortical 

representations, the underlying mechanism has not been explored extensively. One 

possibility long postulated involves the dynamic engagement of inhibitory mechanisms at 

the level of cortex or more peripherally, shifting the E/I balance (von Békésy, 1967; 

Kyriazi et al., 1993; Mountcastle, 1968; Simons and Carvell, 1989; Simons et al., 1992). 

Using micro-electrode recordings of single-units in S1, Brumberg et al. (1996) 

demonstrated that when a whisker was continuously stimulated with white noise, the 

deflection of an adjacent whisker led to a more constrained cortical response than when 

the whisker was deflected alone, a result that could be attributed to thalamic 

decorrelation. The cortical results here, supported by the behavior results in awake 

animals would seem to indicate that the improved discriminability with adaptation cannot 

be fully explained by top-down mechanisms (Gilbert and Li, 2013), which are of course 

absent in the anesthetized animal. Sensory adaptation has been shown to lead to a 

decrease in firing synchrony of thalamic neurons (Temereanca et al., 2008), a 

phenomenon that has been shown to lead to decreased stimulus detectability and 

improved velocity discriminability at the cortex (Wang et al., 2010) due to the extreme 
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sensitivity of layer 4 cortical neurons to the timing of thalamic inputs (Alonso et al., 

1996; Bruno, 2011; Roy and Alloway, 2001; Stanley et al., 2012; Usrey et al., 2000) and 

its importance in determining cortical feature selectivity (Stanley, 2013; Stanley et al., 

2012).  

 

In the separate set of behavior experiments performed in our laboratory, recordings in the 

ventroposterior medial (VPm) nucleus of the thalamus of awake animals further revealed 

a reduction in spike count and timing precision with adaptation. Recovery of spike count 

and timing precision was found to be on a timescale that matched recovery in behavioral 

performance (data not shown), and reductions in both quantities were predictive of a 

reduction in behavioral detection performance. The measured thalamic firing statistics 

were used to drive a model of the thalamocortical circuit, which demonstrated a less 

synchronous drive from the thalamus could produce a sharpening effect with adaptation 

similar to that measured with VSD in the anesthetized cortex. Together, these results 

provide direct behavioral and cortical evidence for the trade-off between detectability and 

discriminability, that this trade-off is modulated through bottom-up sensory adaptation, 

and that the underlying adaptive regulation of convergent thalamic input may play an 

important mechanistic role. 

 

Although as with linking any behavioral percept to the underlying neural activity, it 

cannot be directly asserted that the percepts utilized by the animal to perform the 

detection and discrimination tasks in this study exist in S1, the ideal observer analysis 

shows us that the necessary information is present at this level of processing and that the 

adaptive modulation of the detectability/discriminability trade-off is also reflected at this 

stage. The neural activity in the primary sensory cortex has long been considered the 

fundamental neural basis for downstream sensory percepts and behavior. However, there 

are some contradictory experimental studies on this point, with some demonstrating a 
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complete abolishment of abilities to perform whisker related tasks with the inactivation of 

S1 (O‟Connor et al., 2010), others demonstrating only a severe degradation of detection 

abilities (Hutson and Masterton, 1986; LaMotte and Mountcastle, 1979), and some 

studies showing that micro-stimulation of S1 directly influences an animal‟s stimulus 

detection and discrimination performance (Houweling and Brecht, 2008; Huber et al., 

2008; Romo et al., 1998, 2000). Taken together, it can be, at minimum, concluded that S1 

is a major role player in simple behaviors such as detection. Nonetheless, in order to 

investigate the cortical mechanism underlying stimulus perception, it is ideal to record 

the cortical activity simultaneously in awake, behaving animals. Although the stimuli 

provided here can effectively influence stimulus coding and perception, they are passive 

deflections of the whisker, which can bear subtle mechanistic differences when compared 

to active whisking. In the imaging of awake, behaving animals, the neurophysiological 

and perceptual differences should be tested for the bottom-up and top-down regulations 

of processing states.  
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CHAPTER 3  Sensory adaptation encompasses a continuum of 

brain states 

A modified version of this chapter was published as a research article: 

Zheng, H. J., Wang, Q., & Stanley, G. B. (2015). Adaptive Shaping of Cortical 

Response Selectivity in the Vibrissa Pathway.   J Neurophysiol., 113(10):3850-65. 

 

Portions of this work were presented in talk form at the following:  

Zheng, H. J. V., Ollerenshaw, D.R., Millard, D.C., Wang, Q.,  & Stanley, G.B. Adaptive 

Shaping of Feature Selectivity in the Rodent Vibrissa System: Coding and Behavior. 

Southeast Neuroscience Meeting, Augusta, GA, 2014. 

 

Portions of this work were presented in poster form at the following: 

Zheng, H. J. V., Ollerenshaw, D.R., Millard, D.C., Wang, Q.,  & Stanley, G.B. Adaptive 

Shaping of Feature Selectivity in the Rodent Vibrissa System: Coding and Behavior. 

COSYNE meeting, Salt Lake City, UT, 2014. 

 

Zheng, H. J. V., Ollerenshaw, D. R., Millard, D. C., & Stanley, G. B. The Continuum of 

Adaptation Shapes the Trade-off between Detection and Discrimination. COSYNE 

meeting, Salt Lake City, UT, 2013. 

 

Zheng, H. J. V., Wang, Q., Ollerenshaw, D. R., Millard, D. C., & Stanley, G. B. 

Properties of Adapting Stimuli Differentially Shape Spatial Decoding in Rat Barrel 

Cortex. SfN meeting. New Orleans, L.A., 2012. 
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3.1 Introduction 

We live in a complex sensory environment, where different sensory cues are important 

for perception and decision-making in different contexts.  Not only is there evidence for 

different information being parsed into different pathways  (Goodale and Milner, 1992), 

sensory information processing within a pathway may also be context-dependent, where 

competing coding schemes coexist (Crick, 1984; Sherman, 2001a). Specifically, sensory 

pathways may switch from conveying information for detecting novel features in the 

environment, to conveying information for discerning fine details (Moore, 2004; Adibi et 

al., 2013; Lesica and Stanley, 2004; Lesica et al., 2006; Sherman, 2001b; Wang et al., 

2010), setting the stage for a complex and dynamic coding scheme that may be 

particularly important for interacting with the natural environment (Stanley, 2013). One 

process that modulates state-dependent sensory information processing is sensory 

adaptation, during which neurons decrease firing rate in response to repeated stimuli in 

hundreds of milliseconds and recover on a similar time scale (Webber and Stanley, 

2006). Adaptation is a ubiquitous and cross-modal phenomenon where the pathway shifts 

its dynamic range in response to persistent external stimuli, resulting in both perceptual 

and electrophysiological manifestations.  

 

In somatosensation, psychophysical studies have shown that adaptation heightens spatial 

acuity in tactile discrimination tasks (Vierck and Jones, 1970; Goble and Hollins, 1993;  

Tannan et al., 2006), while electrophysiological studies qualitatively show a spatially 

constrained cortical representation of repetitive stimuli, proposed as a potential 

mechanism for enhanced acuity (von Bekesy, 1967; Lee and Whitsel, 1992; Sheth et al., 

1998; Moore 2004).  Despite the potentially profound implications for sensory coding, 

however, this phenomenon has not been extensively quantified. Analogous to the spatial 

acuity enhancement observed in humans, Chapter 2 demonstrates that adaptation induces 

a brain state where cortical representation of a stimulus is suppressed, and both awake 
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rats and the ideal observer of the cortex can better discriminate the spatial location of a 

whisker stimulus (i.e. which one of two adjacent whiskers was deflected). However, the 

detectability (i.e. the probability that the animal reports the sensation of a whisker 

deflection or the probability that the ideal observer classifies the trial as a detected signal 

as opposed to noise) is degraded at the same time, suggesting a fundamental change in 

spatial acuity that has implications for texture processing (Ollerenshaw, Zheng et al., 

2014). Although a range of electrophysiological studies have demonstrated the effects of 

adaptation on cortical activation in the rodent vibrissa pathway (Sheth et al., 1998; Chung 

et al, 2002; Khatri et al., 2004; Moore, 2004; Webber and Stanley, 2004; Boloori and 

Stanley, 2006; Higley and Contreras, 2007; Khatri et al., 2009; Ganmor et al., 2010; 

Adibi et al., 2013), the extent to which the nature of the adapting stimulus shapes the 

spatial activation in the cortex is unknown, as is the ultimate effect on detectability and 

discriminability.  

 

I used voltage-sensitive dye (VSD) imaging to measure cortical activation in the 

anesthetized rat, to explicitly test spatially distributed S1 vibrissa representations for a 

range of adapting stimuli. I specifically modulated the energy in the adapting stimulus 

through co-variation of the frequency and velocity, two primary parameters comprising 

the kinetic signature (Arabzadeh et al., 2005) of whisker motion in whisking behavior 

and texture contact (Wolfe et al., 2008).  Increasing amounts of adaptation resulted in 

cortical representations that were increasingly degraded in the overall activation and 

constrained spatially. Single-trial based ideal observer analysis revealed a decrease in 

detectability of the whisker input with increasing adaptation and an increase in spatial 

discriminability for moderate levels of adaptation but degraded discriminability for more 

extreme levels of adaptation. Taken together, the results suggest that adaptation operates 

on a continuum and modulates the tradeoff between detectability and discriminability in 



www.manaraa.com

 45 

an ethologically relevant way that emphasizes the competing demands that different tasks 

place on the system. 

3.2 Methods 

3.2.1 Surgery  

All procedures were approved by the Institutional Animal Care & Use Committee at 

Georgia Institute of Technology and in agreement with the National Institutes of Health 

guidelines. Seven female albino rats (Sprague-Dawley; 250-330g) were sedated with 4% 

vaporized isoflurane, then anesthetized with sodium pentobarbital (50 mg/kg i.p., initial 

dose). Supplemental doses were administered as needed to maintain a surgical level of 

anesthesia, confirmed by monitoring heart rate, respiration and eyelid/pedal reflexes to 

adverse stimuli (toe or tail pinch). Following the initial sodium pentobarbital dose, the 

animal was mounted on a stereotaxic device (Kopf Instruments, Tujunga, CA) on a 

vibration isolation table. Atropine (0.09 mg/kg, s.c.) was administered subcutaneously to 

keep the lungs clear of fluid. Lidocaine was injected subcutaneously into the scalp before 

the initial incision on the head. In all experiments, saline was administered (2 

mL/kg/hour) to prevent dehydration. Body temperature was maintained at 37°C by a 

servo-controlled heating blanket (FHC, Bowdoinham, ME). After the midline incision on 

the head, skin and tissue were resected and connective tissue was removed. A craniotomy 

(approximately 3 mm x 4 mm) was drilled on the left hemisphere over the primary 

sensory cortex (stereotaxic coordinates: 1.0-4.0 mm caudal to the bregma, and 3.0-7.0 

mm lateral to the midline; Paxinos and Watson, 2007). The dura was left intact. A dental 

acrylic dam was constructed around the craniotomy. At the end of the surgical 

procedures, a light level of anesthesia was maintained with sodium pentobarbital. The 

animal was euthanized with an overdose of sodium pentobarbital solution after VSD 

imaging, which lasted approximately 2 hours. 
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3.2.2 Staining 

The dura was cleaned using a gentle flow of saline (0.9%), then dried with a gentle air 

blow for about 10-15 minutes or until it appeared “glassy” (Lippert et al., 2007). Voltage 

sensitive dye (VSD RH1691, Optical Imaging) was diluted in saline to approximately 1.5 

mg/mL. The dye solution (~200 µL) was carefully placed into the dam using a micro-

pipette. The craniotomy was covered to prevent the dye from photo-bleaching. The dye 

solution in the dam was circulated and replenished with fresh dye solution every 5-10 

minutes (Lippert et al., 2007). After approximately 2 hours of staining, the unbound dye 

was washed out with saline. Saline was applied to the brain surface after washing. 

Imaging was performed through saline on the brain surface. Saline was replenished 

throughout the experiment.  

3.2.3 Optical imaging 

The excitation light source was a 150W halogen lamp filtered at 621-643nm. The 

fluorescence signals were collected with a MiCam02 camera system (BrainVision, 

Japan). The camera was focused onto layer 2/3, at approximately 300 µm below the pia 

surface (Petersen et al., 2003a). The frame was 184x123 pixels, at 200 Hz (5 ms per 

frame). Prior to each trial, a background image of the craniotomy (F0) was recorded. The 

objective lens was 1x and the condenser lens was 0.63x. The magnification was 1.6x. The 

field of view was 3.5 mm x 2.3 mm and the pixel size was 18.9 µm x 18.9 µm. All 

individual frames of 25-50 single trials were recorded. 

3.2.4 Vibrissa stimulation 

Vibrissae were deflected with an exponentially rising (τ = 2 ms) and decaying saw-tooth 

waveform of 17 ms in duration in the rostral-caudal plane. Each trial had 200 ms of pre-

stimulus recording. Under the non-adapted condition, a single deflection, referred to as 

the test probe, was delivered to a single vibrissa. In adapted trials, the same probe was 

preceded immediately by an adapting stimulus train of 1000 ms on the same vibrissa, 
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with no additional time between the adapting train and the test probe. The same protocol 

described above was presented to an adjacent vibrissa in the next trial.  

 

I varied the stimulus protocol in imaging experiments such that for some animals, the 

adapting stimulus was delivered onto both whiskers at the same time, and for others onto 

a single whisker. There were no qualitative differences. Because of the physiological 

variations, the adjacent pair of vibrissae stimulated was not always the same pair across 

animals. Typically, the surgery technique allowed a craniotomy centered around D2; 

barrels with good VSD staining and devoid of bleeding were chosen (for animal #1: E3 

and E4; #2: D2 and D3; #3: E1 and E2; #4: C2 and C3; #5, #6: C1 and C2; #7: D1 and 

D2). 

 

Each trial was 5000 ms, and there was at least 3800 ms of rest between the last deflection 

and the next trial. Stimulation protocols were presented in random order and repeated 25-

50 times. Therefore, a test probe under the same adapting condition was separated from 

its next presentation by at least 120 seconds. The design to interleave adapting stimulus 

conditions controls for physiological state changes over time, such as those related to 

anesthesia and spontaneous cortical activity.  

 

The frequency of the adapting stimulus train was 4, 10, 20, or 40 Hz, and the deflection 

velocity was 100, 500, 1200, 2500, or 3500 °/s. The total energy in the adapting stimulus 

was the square of whisker displacement integrated over time. In order to evoke a robust 

non-adapted response in each animal, the test probe ranged from 1200 °/s to 3500 °/s 

among 7 animals. 
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3.2.5 Data analysis  

Raw VSD images were processed in MATLAB as previously described in the Methods 

of Chapter 2. To normalize each dataset, the non-adapted response was trial-averaged and 

spatially-filtered (a 5x5-pixel or approximately 0.1 mm x 0.1 mm median, then a 5x5-

pixel average spatial filter). The filtered image was then fitted with a 2-dimensional 

Gaussian function by the least squared error algorithm. All ∆F/F0 pixel values were 

normalized to the amplitude of this Gaussian function for each vibrissa. The magnitude 

and area of the response for each adapting stimulus condition were quantified. The 

response for each stimulus condition was trial-averaged and spatially filtered as described 

above. To produce more accurate Gaussian fits, the elliptical parameters produced by the 

non-adapted Gaussian fit (center pixel and major/minor axes ratio) were imposed on the 

filtered image. The filtered image was then rotationally averaged. A pixel value threshold 

(see Adaptation Intensity below) was applied to the image, then the least square algorithm 

was used to derive a 2-dimensional Gaussian fit. The magnitude of the response was the 

amplitude of the Gaussian fit, and the area was represented by the pixels within +1 

standard deviation of the Gaussian center.  

 

3.2.6 Adaptation intensity  

To quantify the extent of cortical adaptation for each stimulus condition, an adaptation 

intensity was defined as follows.  First, the response ratio for a given stimulus condition 

was calculated, which is the total fluorescence in the trial-averaged adapted response 

divided by that in the trial-averaged non-adapted response. For each stimulus condition, 

the trial-averaged image was filtered with a 5x5-pixel (approximately 0.1 mm x 0.1 mm) 

median then a 5x5-pixel average spatial filter. Total fluorescence was the sum of all 

pixels above the pre-stimulus noise threshold, defined as the mean + 1 standard deviation 

of all pixel values from the trial-averaged pre-stimulus frames.  Adaptation intensity 
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equals 1 minus the response ratio, so that intuitively, the most intense adaptation 

condition corresponds to an adaptation intensity of 1, while an adaptation intensity of 0 

signifies non-adapted condition. 

 

3.2.7 Ideal observer analysis  

Detection: The response variables were extracted as described in Chapter 2. The primary 

region response variable was defined as the decision variable (DV) for this analysis. For 

each stimulus condition, the DVs from all single trials were binned and fit with a 

Gaussian probability function, referred to as the signal distribution. A pre-stimulus noise 

distribution was formed by the decision variables extracted from pre-stimulus frames 

(150 ms preceding the first stimulus) in all non-adapted trials, referred to as the noise 

distribution. From the perspective of an ideal observer of cortical activation, each single 

trial in the signal distribution and noise distribution was classified as either signal or 

noise using the Likelihood Ratio Test (LRT). Given a single trial response variable R, the 

log ratio of the probability that the response was a signal, P(S|R), to the probability that 

the response was noise, P(N|R), was used to classify the trial. A non-negative log 

likelihood ratio classifies the trial as signal, and otherwise noise. With an equal 

probability of signal and noise, Bayes‟ rule expresses the log likelihood ratio as follows:  

     

   

For normal distributions, this expression becomes:  

   

 

              Eq (2) 
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where µs is the mean of the signal response variables, ∑s is the covariance (variance in 

this one-dimensional variable case), and µn ,  ∑n  the mean and covariance of the noise 

response variables (Duda et al., 2001). The likelihood ratio test is validated with the 

“leave-one-out” method, where a detection decision for a single trial is made based on the 

model (average and variance) calculated using the rest of the trials. The fraction of 

correctly classified trials was the final measure for detectability. The same noise 

distribution was used in all adapting conditions. To ensure the results were not sensitive 

to the choice of pre-stimulus time frames, the analysis was repeated using noise 

distributions derived from the time frame following the adapting stimulus. Briefly, for 

each adapting condition, the set of frames in the 25 ms period preceding the test probe 

(after the adapting stimulus) was used to form its own “adapted noise distribution”. Using 

adapted noise distributions for each corresponding adapted signal, the detection 

performance still showed a monotonic decrease with adaptation (see Figure 3.3F). 

 

Discrimination: As the animal likely further distinguishes the stimulus features only after 

it is detected, only detectable trials were considered for discrimination analysis. The 

primary response variable of a single trial must be above the detection threshold, which 

was calculated from the noise distribution of each whisker stimulation data where the 

threshold value yielded the 10% false-alarm rate observed in previous behavioral studies 

(Stüttgen et al., 2006; Stüttgen and Schwarz 2008; Ollerenshaw et al., 2012). The noise 

distribution was formed as described in the detection analysis. The detection threshold is 

a value such that the probability of obtaining a pre-stimulus noise value above the 

threshold, thus resulting in a misclassification of noise as a signal (false alarm rate) is 

10%. To ensure that the discrimination result does not solely depend on a particular level 

of detection threshold, the analysis was repeated for a range of assumed thresholds. 

Specifically, the discrimination analysis was performed with the threshold set to 0, 25, 

50, 75, and 100% of the detection threshold. Regardless of the detection threshold value, 
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including the 0% level which essentially constituted no threshold, the discrimination 

result was qualitatively the same (see Figure 3.5E). The analysis was repeated using noise 

distributions after the adapting stimulus.  Detection thresholds were derived specific to 

each adapting condition, using the adapted noise distributions described above (see 

Detection). Again, the discrimination performance was qualitatively similar (see Figure 

3.5F).  

 

As with all electrophysiological studies, the data are impaired by limited trials. The 

duration of data collection in an average VSD experiment is limited to approximately 2 

hours, mainly due to photo-bleaching. Thus, the number of trials for each stimulus 

condition is low. To rectify this, all response variables from 7 animals were normalized 

(see Data Analysis), merged, and grouped according to their adaptation intensity. The 

majority of data sets were normally distributed.  Gaussian probability functions were then 

fitted to the merged data to obtain estimates of the parameters (mean, variance, and 

covariance). As the raw data are limited and noisy samples, unlimited samples from the 

fitted parametric model were used. 

 

In detail, for each stimulus condition, the adaptation intensity was calculated from its 

trial-averaged image. For each detected trial within that stimulus condition, the response 

variables in the two adjacent barrels, R (R1, R2), were extracted and normalized (see Data 

Analysis, Chapter 3). Because the responses from two adjacent whisker deflections were 

approximately symmetric, for each adaptation intensity, all primary and adjacent 

variables were designated as trials from whisker 1 stimulation, duplicated with reversed 

primary and adjacent values, and designated as trials from whisker 2 stimulation. All 

response variables across 7 animals (14 whisker deflections) with the same adaptation 

intensity were merged, and the mean  µ (µ1, µ2), standard deviation σ (σ1, σ2), and 

covariance σ12 were calculated. The centers of the cluster, marked with black crosses, 
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represent the trial-average responses µ (µ1, µ2). The ellipses outline 2 standard deviations. 

The eccentricity of the ellipse represents the noise correlation (Pearson correlation 

coefficient) between  and . 

 

Regression analysis was used to determine the relationship between these parameters and 

adaptation intensity, and to determine the simplest and most appropriate perspective for 

the subsequent analyses. The difference between the primary and adjacent means, which 

determines the distance between the cluster centers, did not show any correlation with 

adaptation intensity (r = -0.17, p = 0.61, data not shown) or with the mean of the cluster 

(r = 0.46, p = 0.16, data not shown). Because the standard deviation of primary barrel 

variables is correlated with that of the adjacent barrel variables (r = 0.87, p = 0.0005, see 

Figure 3.5B), they are presented as a combined standard deviation, . The 

combined standard deviation is highly correlated with primary (r = 0.97, p <0.0005) and 

adjacent (r = 0.97, p <0.0005) standard deviation and the covariance (r = 0.99, p 

<0.0005). The noise correlation was defined as the ratio of the covariance to the product 

of the primary and adjacent standard deviations, which is the Pearson correlation 

coefficient between  and . 

Trials (n=1000) were drawn from a 2-dimensional Gaussian distribution with the 

parameter values indicated in Figure 3.5B and C. Because the distance between the 

cluster centers did not change with adaptation, the values shown here all used a typical 

value from the non-adapted state. Each single trial was then classified using the 

Likelihood Ratio Test. Similar to the detection analysis in Figure 3.3, the direction of 

stronger adaptation on the map was determined by the decreasing combined standard 

deviation with adaptation intensity (for adaptation intensity and µ1, r = -0.73, p = 0.011, 

for  µ1 and the combined standard deviation,  r = 0.62, p = 0.043, data not shown). For 
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the observed response  on a given trial, the log ratio of the probability that the response 

resulted from whisker 1 stimulation, P (W1|R), to the probability that the response 

resulted from whisker 2 stimulation,  P (W2|R), was used to classify the trial. A non-

negative log likelihood ratio classifies the trial as whisker 1 stimulation, and otherwise 

whisker 2 stimulation. The likelihood ratio is: 

                 

 

  For normal distributions, this expression becomes: 

   

                   Eq (4) 

where µ1 is the mean of the whisker 1 stimulation response vectors, ∑1  the covariance 

matrix, and µ2,  ∑2 the mean and covariance matrix of the whisker 2 stimulation response 

vectors (Duda et al., 2001). The likelihood ratio test is validated with the “leave-one-out” 

method, and the fraction of correctly classified trials was the final measure for 

discriminability. Because the data satisfy the condition that,   >   , the outcome 

of the LRT was directly determined by the unity line. That is, for whisker 1 deflection 

data points, any trial that is below the unity line would be correctly classified as whisker 

1 deflection, and any trial that is above the unity line (meaning the adjacent barrel 

fluorescence is greater than the primary barrel value) would be misclassified as whisker 2 

deflection.     

 

 



www.manaraa.com

 54 

3.3 Results 

To investigate how the dynamics of sensory adaptation mediate the spatiotemporal 

activation of the cortex and the possible implications for the cortical code, I employed 

voltage-sensitive dye (VSD) imaging of the cortex in response to a range of tactile inputs 

in the rat vibrissa system.  I then performed ideal observer analysis to analyze the 

potential effects of sensory adaptation on cortical information coding. For a detection 

task, each trial was classified as detected signal or noise based on the average 

fluorescence in the primary barrel; for a discrimination task, each trial was classified as 

whisker 1 or whisker 2 deflection, based on the average fluorescence in both primary and 

adjacent barrels.  

 

3.3.1 Frequency and velocity of adapting stimuli differentially shape cortical 

response 

It is well established that the barrel cortex is highly sensitive to the frequency and 

velocity of whisker deflections, which are primary parameters comprising the kinetic 

signature of whisker motion (Arabzadeh et al., 2004, 2005; Chung et al., 2002; Khatri et 

al., 2004; Moore, 2004; Ritt et al., 2008; Temereanca et al., 2008; Wolfe et al., 2008).  

Therefore, I investigated to what extent these properties of the adapting stimulus shape 

the cortical response, particularly the spatial activation, through VSD imaging. An 

example of this characterization is shown in Figure 3.1.  I compared the cortical 

responses to a 1200°/s punctate deflection, referred to here as the test probe, recorded 

under different conditions.  First, in the absence of any prior adapting deflections of the 

vibrissae, the recorded cortical response to the test probe was referred to as the non-

adapted response, a typical example of which is shown on the top panel of Figure 3.1.  

For the adapted responses, the cortical activation was recorded in response to the test 

probe stimulus following an adapting stimulus of varying frequency and velocity (see 
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Methods). In this example, 9 different adapting trains were derived from the combination 

of 3 frequencies (4, 10, and 20 Hz) and 3 deflection velocities (100, 500, and 1200 °/s), 

while the test probe remained a single deflection of 1200 °/s on either one of two adjacent 

whiskers before and following adaptation.  Each image in the grid shows the response to 

the test probe following an adapting stimulus of a certain frequency and velocity. The 

responses shown are time-averaged from signal onset to peak (10-25 ms post-stimulus). 

 

 

Figure 3.1 Cortical responses to separate deflections on two adjacent whiskers.  

Whiskers deflected were E3 and E4 separately, responses were averaged over 30 trials.  

Top: Non-adapted response, stimulus protocol consisted of two separate single 

deflections on the two adjacent whiskers (top image shows the response to a deflection on 

E3 only, bottom image shows the response to a deflection on E4 only). 
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Bottom: Adapted responses. For a given trial, an adapting stimulus train was applied on a 

single whisker for 1000 ms at 4, 10, or 20 Hz and each deflection within the adapting 

stimulus was 100, 500, or 1200 °/s, resulting in 9 combinations of adapting stimuli. A 

single deflection followed on the same whisker as a probe, at a fixed velocity across all 

adapting stimulus conditions.  Images were trial-averaged and time averaged from signal 

onset to peak (10 – 25 ms after stimulus onset). The cortical response became 

increasingly suppressed with increasing frequency and/or velocity. 

 

The non-adapted state showed significant qualitative overlap of the cortical responses to 

adjacent whisker stimuli. Adaptation tended to attenuate the magnitude of the cortical 

responses, while also spatially localizing the response, consistent with previous studies 

describing the spatial “sharpening” of the cortical response following adaptation (von 

Békésy, 1967; Kleinfeld and Delaney, 1996; Lee and Whitsel, 1992; Moore, 2004; Moore 

et al., 1999; Ollerenshaw et al., 2014; Sheth et al., 1998; Simons et al., 2005).  This 

effect, however, was very dependent upon the nature of the adapting stimulus. At any 

given velocity of the adapting stimulus, as the frequency of the adapting stimulus 

increased (top to bottom), the cortical response to the test probe decreased in magnitude 

and in area. Similarly, at any given frequency, as the velocity increased (left to right), the 

cortex was also increasingly suppressed. Most importantly, different adapting stimulus 

trains led to similar cortical responses. For example, an adapting stimulus with low 

frequency but high velocity (such as 4 Hz and 1200 °/s) and one with higher frequency 

but lower velocity (such as 10 Hz and 500 °/s) had qualitatively similar effects on the 

response to the same probe stimulus.  Note that in this experiment, I additionally tested 

the entire range of velocities coupled with a frequency of 40 Hz, but the resulting cortical 

response was largely suppressed, even more so than for the 20 Hz case (not shown).  

These same qualitative effects were noted across all experiments (n = 7 animals, 14 

whiskers), although the exact combinations of the velocities and frequencies of the 

adapting stimuli were slightly different across different animals (see Methods).  
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This qualitative observation, coupled with previous findings (Arabzadeh et al., 2004), 

suggested that the total energy in the adapting stimulus might be the relevant determinant 

of the degree of adaptation. Here, I define the total energy in the stimulus as the square of 

the whisker deflection angle, integrated over the duration of the adapting stimulus, as in 

the top of Figure 3.2A. Although this would be analytic for purely sinusoidal inputs, for 

the pattern of exponentially rising and decaying deflections presented, the energy was 

computed numerically (see Methods). Figure 3.2A shows that the adapting stimulus 

energy increased with higher frequency and/or velocity. An adapting stimulus with higher 

frequency but lower velocity had a similar energy as one with lower frequency but higher 

velocity. In terms of the cortical response, the adaptation intensity was derived as a 

metric for the degree of adaptation, similar to those commonly used in studies 

characterizing adaptation in spiking activity (Chung et al., 2002; Higley and Contreras, 

2007; Khatri et al., 2004). It was defined as 1 minus the ratio of the total fluorescence in 

the trial-averaged image of the adapted response to that of the corresponding non-adapted 

response (see Methods). Figure 3.2B shows that the adaptation intensity increased with 

increasing adapting stimulus energy (r = 0.96, p < 0.0005), demonstrating that a 

continuum of adapted responses exists, and that the degree of adaptation is shaped by the 

temporal feature of the adapting stimulus. Note that each data point is the average of all 

adaptation intensities within a range of adapting stimulus energy. Thus, different 

frequency and velocity combinations can result in similar adaptation intensities. 

 



www.manaraa.com

 58 

 

Figure 3.2 Cortical response decreased in both magnitude and area with stronger 

adapting stimulus energy.  

A. The total energy in the adapting stimulus increased with frequency and/or velocity 

such that a high frequency / low velocity adapting stimulus contained similar energy as a 

low frequency / high velocity stimulus, as shown in the grid on log scale.  

B. Adapting stimulus energy determined the extent of cortical suppression. Adaptation 

intensity, defined as 1 minus the ratio of total fluorescence in the trial-averaged adapted 

response to that of the corresponding non-adapted response (see Methods), was used to 

quantify the extent of cortical response suppression. A higher adaptation intensity 
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indicated stronger adaptation. Average adaptation intensity was correlated with the total 

energy in the adapting stimuli. Error bars represent +/-1 standard error of the mean.  

C. Both magnitude and area of the response decreased with adaptation. With stronger 

adaptation, or higher adaptation intensity, both the magnitude and the area of the 

response decreased. An example of this phenomenon is shown on the right. In the non-

adapted state (adaptation intensity of 0), the trial-averaged image (over 30 trials) had a 

strong magnitude and a large area spread. The contour of a two-dimensional Gaussian fit 

was superimposed (black) to show the quantification of area. With stronger adaptation, 

there was a gradual decrease in magnitude and area spread. The Gaussian contour of the 

response to the corresponding adjacent whisker deflection was superimposed (grey 

outline), demonstrating that stronger adaptation reduced area overlap between the 

responses from the adjacent barrels. 

 

As shown qualitatively in Figure 3.1, as the cortex adapts, both the magnitude and the 

area of the response tend to decrease together. To quantify the above observations in 

detail, a two-dimensional Gaussian model was fit to the trial-averaged image (see 

Methods). The magnitude of the response was defined as the amplitude of the Gaussian 

fit, and the response area was defined as the area of the Gaussian contour at 1 standard 

deviation (examples of which are shown in Figure 3.2C, right column of VSD images). 

Figure 3.2C shows the trial-averaged magnitude (black curve) and the area (grey curve) 

spanning the adapting stimulus energy range. The trial-averaged magnitude and area for 

each stimulus condition were binned according to their adaptation intensity, thus each 

data point represents the mean and standard error of multiple trial-averaged responses in 

the same range of adaptation intensity. As an example, the right column shows the trial-

averaged responses at three different adaptation intensities.  As adaptation intensified, the 

response magnitude decreased (correlation between average magnitude and adaptation 

intensity r = -0.93, p < 0.0005), as demonstrated in the example images. At the same 

time, the area of the response also decreased (r = -0.97, p < 0.0005), as shown by the bold 

black outlines in the example images.  When the contour of the response to the 

corresponding adjacent whisker deflection was superimposed (grey outlines), it was 

evident that the responses to the two adjacent whisker deflections became less overlapped 
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as adaptation intensified.  Qualitatively, this seems to suggest that as the magnitude 

decreased, the response may become harder to detect; however, as the area also 

decreased, it may become easier to discriminate between the responses to adjacent 

whisker deflections. Although many studies have posited that a spatially sharpened 

response at the level of cortex may be a potential mechanism for enhanced spatial acuity 

observed in psychophysical studies (von Békésy, 1967; Lee and Whitsel, 1992; Moore, 

2004; Moore et al., 1999; Sheth et al., 1998; Simons et al., 2005), the relationship 

between average response and quantitative information conveyed trial-to-trial is not 

trivial (Averbeck et al., 2006; Pouget et al., 1999). Only recently has the cortical response 

been analyzed on a single-trial basis in terms of what information is available for 

detection and discrimination tasks  (Ollerenshaw et al., 2014; Wang et al., 2010). 

However, these studies investigated the cortical information and detection-discrimination 

tradeoff in a binary manner, either in the presence or absence of an adapting stimulus. 

How the properties of adapting stimulus and the continuum of cortical responses may 

shape the detectability and spatial discriminability of the whisker inputs, therefore, is 

unknown. Furthermore, it is also the case that accurately determining the cortical area of 

activation involves several arbitrary assumptions and is itself non-trivial.  I therefore turn 

to ideal observer analysis as a simpler and more powerful description of the information 

conveyed by the cortical signals. 

3.3.2 Adaptation degrades detectability of the stimulus 

To assess the potential significance of the changes in the cortical activation following 

adaptation, I evaluated the ability of an ideal observer to discern between the spatially 

disparate whisker stimuli.  Because the adaptation affects not only the area of cortical 

activation, but also the magnitude of cortical activation above the intrinsic noise level, I 

considered both the discriminability of spatially disparate stimuli as well as their 

detectability, as the coupling between these two aspects of cortical activation suggested a 
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tradeoff between detectability and discriminability. In the detection task, the ideal 

observer of the cortical recordings was required to report whether a whisker had been 

deflected; in the discrimination task, the ideal observer reported which of the two 

adjacent whiskers was deflected.  

 

Figure 3.3 Detectability of the stimulus was degraded with adaptation.  

A. Detection performance of an ideal observer measures the separation of the signal 

distribution from the noise distribution. This was defined as the percentage of trials 

correctly classified as signal or noise using the Likelihood Ratio Test (LRT, see 

Methods). As the three examples demonstrated, the mean and standard deviation of the 

signal distribution both decreased with adaptation, which would have opposite effects on 

the separation of signal from noise.  

B. The optimal detection performance increased with larger signal mean but smaller 

standard deviation. The change in standard deviation and mean induced by adaptation is 

indicated by the black line. The arrow indicates the direction of stronger adaptation.  



www.manaraa.com

 62 

C. The mean (r = -0.98, p < 0.0005) and standard deviation (r = -0.7, p = 0.017) of the 

signal distribution decreased with adaptation intensity.  

D. The standard deviation of the signal distribution is correlated with its mean (r = 0.76, p 

= 0.0068).  

E. As signal mean and standard deviation both decreased with stronger adaptation, the 

detection performance on the line shown in B also decreased with stronger adaptation.  

F. Detection performance is qualitatively the same when analyzed using the noise 

distribution following the adapting stimulus.      

 

Figure 3.3 shows the detection performance on a single-trial basis from the ideal 

observer‟s perspective. Figure 3.3A shows examples of signal and noise probability 

distributions from one animal at 0 (non-adapted), medium, and high adaptation 

intensities.  The signal distribution consisted of all single-trial responses, where each trial 

was represented by the average fluorescence in the primary barrel (Figure 3.3A inset, see 

Methods). Both the noise and signal distributions were characterized as Gaussian 

distributions (see Methods). In the framework of conventional signal detection theory, the 

detectability of a signal is a function of the separation between the signal distribution and 

the noise distribution – a correct classification of an observation as signal depends on 

attributing the observation to the signal distribution and not to the noise distribution, and 

vice-versa (Macmillan and Creelman, 2004). The separation between the signal 

distribution and the noise distribution is determined by two factors: the distance between 

their means and their standard deviations.  Qualitatively, a smaller distance between the 

means obscures the distinction between two distributions, and a smaller standard 

deviation has the opposite effect (Macmillan and Creelman, 2004). 

 

To fully quantify the effects of the mean and standard deviation on detectability in this 

framework, the optimal classification performance for a range of these parameters was 

calculated (Figure 3.3B). For each mean and standard deviation (corresponding to a 

single square in the color map in Figure 3.3B), 1000 single trials were drawn from a 

normal distribution with the given signal mean and standard deviation designated as 
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“signal” trials, and 1000 single trials from a normal distribution with the constant pre-

stimulus noise mean and standard  deviation designated as “noise” trials. Any given 

single-trial response R was optimally classified by the Likelihood Ratio Test (LRT), 

where the probability that R was a signal trial, P(S|R), was compared to the probability 

that it was a noise trial,  P(N|R). A single trial was correctly identified as a signal if 

P(S|R) > P(N|R), but misclassified as noise if P(S|R) < P(N|R). Any given single noise 

trial was similarly classified. The percentage of trials correctly classified was defined as 

detectability. Therefore, each square on the color map represents the theoretical optimal 

classification performance given a noise distribution and a signal distribution, where 

chance is 50%. I show that, for a given noise distribution, detectability decreased with 

smaller mean of the signal distribution, but increased with smaller standard deviation.  

 

However, as shown in Figure 3.3A, both the mean and the standard deviation of the 

signal distribution decreased with more intense adaptation, making the possible effects of 

adaptation on detection ambiguous.  Thus, I quantified the relationship between the mean 

and the standard deviation of the signal distribution as the system adapts.  As shown in 

Figure 3.3C and D, with increasing adaptation intensity, both the mean and standard 

deviation of the signal distribution decreased (for mean r = -0.98, p < 0.0005, for standard 

deviation, r = -0.7, p = 0.017), and the standard deviation decreased with smaller mean 

(Figure 3.3D, r = 0.76, p = 0.0068). Mean and standard deviation were averaged across 

animals (n = 14 barrels, 7 animals). The linear relationship between the mean and the 

standard deviation in Figure 3.3D was traced by the black line on the LRT color map in 

Figure 3.3B, with the arrow indicating the direction of stronger adaptation (same as the 

direction of decreasing mean with stronger adaptation, as quantified in Figure 3.3C). 

Extracting the LRT results along the line, detection performance decreased nearly 20% 

monotonically with stronger adaptation (Figure 3.3E).  
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For simplicity in the analysis, the same noise distribution was used in all adapting 

conditions. To ensure the result was not sensitive to the choice of pre-stimulus time 

frames, analyses were repeated using noise distributions derived from the time period 

following the adapting stimulus (see Methods). The detection performance still showed a 

monotonic decrease with adaptation from approximately 80% to 60%, as shown in Figure 

3.3F. 

 

3.3.3 Moderate extent of adaptation enhances discriminability of the stimulus 

Figures 3.4 and 3.5 show the discrimination performance on a single-trial basis from the 

ideal observer‟s perspective. Each single trial was represented with a two-dimensional 

variable, consisting of the average fluorescence in the cortical barrel-related columns 

corresponding to the two adjacent whiskers (denoted R1 for barrel 1 and  R2 for barrel 2, 

Figure 3.4A, see Methods). The response of barrel 1 to deflection of whisker 1 is denoted 

R1|W1, while the response of barrel 2 to deflection of whisker 1 is denoted  R2|W1, and so 

on. For each stimulus condition, all trials form a scatter plot (Figure 3.4B).  

 

As it is unlikely that either the animal or the ideal observer could distinguish the stimulus 

features without detecting the stimulus first, only detectable trials were considered for 

discrimination analysis. Because behaving animals are observed to respond to 

approximately 10% of stimulus-absent trials in a detection task (Stüttgen et al., 2006; 

Stüttgen and Schwarz 2008; Ollerenshaw et al., 2012), I utilized a detection threshold 

value that yielded 10% false-alarm rate (see Methods).  

 

Due to experimental constraints in the VSD imaging, the trials available for 

discrimination were limited. Thus, all detectable trials across all animals were normalized 

to the maximum value in the non-adapted response (see Methods), merged, and grouped 
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according to their corresponding adaptation intensity (n=7 animals). The responses to 

either whisker deflection were approximately symmetric, in that the response in the 

primary and adjacent barrels to a single whisker stimulus mirrored the analogous 

responses when the adjacent whisker was stimulated.  Under this assumption, the 

responses were further combined, reducing the responses to the primary (R1|W1), (R2|W2),   

and adjacent barrel (R2|W1), (R1|W2) responses. Adjacent whisker stimulation responses 

were mirrored from the combined result. 
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Figure 3.4 Ideal observer analysis of spatial discrimination.  

A. The average fluorescence signals in the two stimulated barrels (highlighted with black 

ellipses) were collected to represent each single trial. The average fluorescence in the 

barrel corresponding to whisker 1 was designated as R1 and so on. For whisker 1 

stimulation, R1 was the primary barrel variable, and R2 the adjacent variable.   

B. For each adaptation intensity, the response variables above the detection threshold 

were collected from all single trials across animals (see Data Analysis in Methods). The 

response variables R1 and R2 were the average fluorescence in the two adjacent barrels 

(with R1 corresponding to the primary barrel of whisker 1 and R2 to that of whisker 2), 

normalized to amplitude of trial-averaged non-adapted response (see Methods). The 

brown ellipse outlines the trials from whisker 1 stimulation, and the green ellipse whisker 

2. A single trial was classified as a response to either whisker 1 or whisker 2 stimulation 

using the Likelihood Ratio Test (see Methods). The discrimination performance was 

defined as the percentage of trials correctly classified. The outcome of the LRT was 

directly related to the separability of the two clusters, which was determined by the 

distance between the centers of the clusters (indicated by the crosses), standard deviation 

(in both horizontal and vertical directions), and correlation of the clusters.  

C. A cartoon illustration of improved discriminability by the increased distance between 

the centers of the clusters.  

D.  A cartoon illustration of improved discriminability by decreased standard deviations.  

E.  A cartoon illustration of improved discriminability by increased noise correlation. 

 

An example of the response clusters is shown in Figure 3.4B. The trials from whisker 1 

deflection are outlined by the brown ellipse, and the trials from whisker 2 deflection 

(mirrored from whisker 1 deflection) are outlined in green. The overlap of the two 

response clusters directly determines the level of performance to expect in discriminating 

between the deflections of either of the two whiskers. Qualitatively, the overlap of the 

two-dimensional clusters is determined by the distance between the cluster means (black 

crosses), their overall standard deviations, and the noise correlation between  R1 and R2. 

Noise correlation is computed as the Pearson correlation between R1 and R2, as the 

correlation across trials is not dependent on the average responses to the stimulus, but on 

the trial-to-trial variability (Averbeck et al., 2006).  Figure 3.4C-E provides illustrations 

of how these key parameters influence the degree of overlap, and thus the level of 

discriminability.   As shown in Figure 3.4C, if the centers of the clusters are farther apart 
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(compare to the original cluster outlines in Figure 3.4B) while variability and noise 

correlation were held constant, then the ellipses are farther away from each other. 

Similarly, if the variability of the individual column response is smaller while the centers 

and noise correlation remained unchanged (Figure 3.4D), the area overlap between the 

ellipses also decreases. Finally, if the noise correlation of the responses across columns is 

higher with the same centers and variability (Figure 3.4E), the ellipses become more 

elongated and the ellipses are thus less overlapped.  

 

The theoretical optimal classification performance in relation to its determinants is 

quantified in the color map in Figure 3.5A. The distance between the cluster means was 

not strongly influenced by adaptation, and was thus not included (see Methods, data not 

shown). Furthermore, because the variability along the horizontal axis (σ1, standard 

deviation of primary barrel variable) and that along the vertical axis (σ2, standard 

deviation of adjacent barrel variable) were correlated (r = 0.87, p = 0.0005, Figure 3.5B), 

they were jointly presented as a combined standard deviation (see Methods) for a clearer 

visualization. Thus, assuming a fixed distance between the cluster means, for each given 

standard deviation and noise correlation combination, the optimal discrimination 

performance was quantified by classifying 1000 single trials drawn from a normal 

distribution with the given parameters, which essentially approximates the area overlap 

between the ellipses. The discrimination performance was evaluated with the Likelihood 

Ratio Test. Given a particular single-trial response R = (R1,  R2), the probability that it 

resulted from whisker 1 stimulation, P(W1|R), was compared to the probability that it 

resulted from whisker 2 stimulation, P(W2|R). A single trial that was truly drawn from 

whisker 1 deflection was correctly classified if P(W1|R) > P(W2|R), but otherwise 

misclassified as whisker 2 stimulation. Discrimination performance increased with higher 

noise correlation at a given standard deviation, and with smaller standard deviation at any 

given noise correlation.  
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Figure 3.5 Discrimination performance peaked at intermediate adaptation intensity.  

A. Discrimination performance was strongly influenced by variability within column and 

noise correlation across columns. Discrimination performance increased with higher 

noise correlation but lower standard deviation of the variable clusters. The change in 

standard deviation and noise correlation induced by adaptation is indicated by the black 

curve. The arrow indicates the direction of stronger adaptation. For simplicity, the 

combined primary and adjacent barrel variable standard deviation is shown on the map 

because they were well correlated (r = 0.87, p = 0.0005).  The distance between the 

cluster centers was not included as a factor because it did not demonstrate correlation 
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with adaptation intensity (r = -0.17, p = 0.61) or the cluster mean (r = 0.46, p = 0.16, data 

not shown).  

B. The standard deviation of the primary barrel variables and that of the adjacent barrel 

variables were correlated (r = 0.87, p = 0.0005).  

C. Correlation across columns was maximal at intermediate within-column variability 

(combined primary and adjacent barrel standard deviation).  

D. The values on the performance map along the black curve in A were extracted and 

plotted against adaptation intensity. Similar to Figure 3.3C and 8D, the combined 

standard deviation decreased with stronger adaptation (data not shown). The 

discrimination performance peaked at an intermediate adaptation intensity.  

E. The discrimination performance is relatively insensitive to the detection threshold. 

Each discrimination performance was evaluated using a fraction of the detection 

threshold value that yielded 10% false alarm rate (see Methods).  

F. Discrimination performance was qualitatively the same when analyzed using the noise 

distribution following the adapting stimulus.  

G. A possible computational mechanism for the overall nonlinear noise correlation. Each 

axis represents a component of correlated neural activity and each square is the overall 

noise correlation that is the sum of the two components. The black curve represents a 

possible scenario where one component increases its noise correlation with adaptation, 

while the other decreases its noise correlation, thus creating an overarching effect for the 

overall noise correlation. The arrow indicates the direction of stronger adaptation. 

 

Next, I located where the experimental observations reside in the theoretical optimal 

performance map in Figure 3.5A. The standard deviation was expected to decrease with 

adaptation, as shown in Figure 3.3. However, it was not immediately clear how the noise 

correlation co-varied with standard deviation, and how this would affect discriminability. 

I found that, similar to data presented in Figure 3.3C and D, the combined standard 

deviation decreased with stronger adaptation, and that noise correlation was maximal at 

an intermediate standard deviation (Figure 3.5C, see Methods). This nonlinear 

relationship between the combined standard deviation and the noise correlation is 

indicated by the black curve on the color map in Figure 3.5A. The arrow indicating the 

direction of stronger adaptation in Figure 3.5A is in the direction of decreasing standard 

deviation. Extracting the LRT results along the curve, I show that discrimination 

performance followed a similar trend as the noise correlation and reached a maximum at 
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an intermediate adaptation intensity (Figure 3.5D).  This nonlinearity could arise from 

multiple mechanisms that have opposing effects on correlated activity (see Discussion 

and Figure 3.5G). Note that relatively modest changes in the noise correlation resulted in 

a nearly 10% increase in discrimination performance. 

 

Although the choice of detection threshold was based on animal task performance from 

previous studies (Ollerenshaw et al., 2012; Stüttgen and Schwarz, 2008; Stüttgen et al., 

2006), to ensure that the discrimination result does not solely depend on a particular level 

of detection threshold, the analysis was repeated for a range of assumed thresholds in 

Figure 3.5E. Specifically, the discrimination analysis was performed with the threshold 

set to 0, 25, 50, 75, and 100% of the detection threshold. Regardless of the detection 

threshold value, including the 0% level which essentially constituted no threshold, the 

discrimination result was qualitatively the same, where the discriminability was the 

highest at a moderate adaptation intensity of approximately 0.5, but lower at either end of 

the adaptation spectrum. 

 

In these analyses, the noise distributions were derived from the non-adapted cases for 

simplicity. It is however possible that the adaptation influences the noise distributions 

against which signals would be compared. To directly test whether this produced a 

significant effect, detection thresholds were derived specific to each adapting condition, 

using the adapted noise distributions described above (see Detection). The discrimination 

performance was qualitatively the same (Figure 3.5F). 

 

Taken together, the results thus far suggest that varying degrees of adaptation shape 

detectability and discriminability in distinctly different ways.  The detection and 

discrimination performances as a function of adaptation intensity are summarized in 

Figure 3.3E and 3.5D. The fact that the detectability decreased monotonically with 
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increasing amounts of adaptation implies that a stimulus is most detectable in the non-

adapted state (adaptation intensity = 0). In contrast, the probability of correctly 

discriminating a stimulus given that it was detected was the highest at an intermediate 

adaptation intensity.  As described in Figure 3.2B, the adaptation intensity is a function of 

the overall energy in the adapting stimulus.  As a result, the intermediate adaptation 

intensity corresponds non-uniquely to a range of velocities and frequencies that lead to a 

stimulus energy of approximately 500 deg
2
 ms.  For the experimental conditions here, 

this corresponds to a low velocity adapting stimulus that is in the 10-20 Hz range, or one 

that has a lower frequency of 4 Hz but a higher velocity. These different modes of 

vibrissa motion with complementary frequency and velocity could be related to natural 

whisking behavior that is thought to adapt the sensory pathway in behaving rats and 

speculated to improve tactile discrimination (Semba and Komisaruk, 1984; Fanselow and 

Nicolelis, 1999; Moore, 2004). 

3.4 Discussion 

Rats can reliably discriminate between stimulation of adjacent whiskers, further enhanced 

by adaptation (Ollerenshaw et al., 2014). Although as in most behavioral studies, this was 

an artificial task, the performance reflects spatial acuity, much like two-point tactile 

discrimination in humans. As the rodents palpate objects with their whiskers, the spatial 

resolution at which the sensors are represented centrally affects information transmitted. 

If adjacent whiskers cannot be distinguished, they likely convey redundant information, 

even though they contact different parts of the object. Further, the form of adaptation here 

carries ethological relevance. Moderate adaptation resulted from either a low-velocity 

adapting stimulus at a high frequency (10-20 Hz), or one of high velocity but low 

frequency (4 Hz). In behavioral studies, different frequencies of natural whisking have 

been observed (Semba and Komisaruk, 1984; Fanselow and Nicolelis, 1999). 

Importantly, similar to what was demonstrated with passive adaptation here, the higher 
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frequency range whisking exhibited smaller amplitude and vice versa. I speculate that the 

frequency-amplitude switch in whisking behavior likely conserves energy in whisking 

movements, producing similar effects on spatial acuity.  With high-energy adaptation, 

both detectability and spatial discriminability degrade, resulting from high-frequency, 

high-velocity adapting stimuli not observed in natural whisking. These observations are 

thus consistent with a continuous modulation of information processing to facilitate the 

tradeoff between detectability and spatial acuity in the natural environment. 

 

Although adaptation has been widely studied, there is no consensus as to a single 

hallmark effect or biophysical mechanism, likely pointing to a range of mechanisms and 

manifestations.  Particularly, although a range of studies have shown consistent decreases 

in firing with adaptation, recent studies have suggested more nuanced effects, with 

diverse functional consequences across cortical laminae and cell types (Heiss et al., 2008; 

Higley and Contreras, 2006; Khatri et al., 2004). Demonstrated here with VSD, which 

captures the aggregate subthreshold activity across cell types within layer 2/3, is a net 

suppressive effect of adaptation, but the relative contributions of different cell types and 

mechanisms cannot be determined with this approach. However, the most prominent 

feature of adaptation, the reduction in cortical activity, is linked to thalamocortical 

synaptic depression (Chung et al., 2002) and thalamic de-synchronization (Temereanca et 

al., 2008; Wang et al., 2010), as demonstrated in awake animals (Ollerenshaw et al., 

2014). The response modulation by adaptation likely reflects a complex combination of 

these mechanisms and others. The fact that the cortical response is continuously 

modulated suggests that at least one mechanism may also operate on a continuum. 

Finally, it is likely that the adaptive effects observed here are affected by anesthesia. 

However, it is clear from Chapter 2 (Ollerenshaw et al., 2014) that in the awake state, 

adaptation results in similar trends in the tradeoff between detectability and 

discriminability. It further demonstrated in the awake animal clear adaptation effects on 
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the thalamic inputs that drive the cortical activation, strikingly similar to those observed 

under anesthesia (Chung et al., 2002; Ganmor et al., 2010; Khatri et al., 2004; 

Temereanca et al., 2008; Wang et al., 2010).  Thus, the fundamental findings here likely 

reflect how similarly adapting stimuli would shape activation in the awake animal.  

 

Adaptation-induced spatial sharpening has long been speculated as a mechanism for 

enhanced spatial acuity in psychophysical studies (von Békésy, 1967; Lee and Whitsel, 

1992; Moore et al., 1999; Sheth et al., 1998; Simons et al., 2005; Tommerdahl et al., 

2002). However, average responses do not dictate the information conveyed (Averbeck et 

al., 2006; Pouget et al., 1999). In fact, I found that the main factor shaping the 

discriminability was the noise correlation of activation across cortical columns. Although 

many studies point out the peril of noise correlation in coding efficiency (Zohary et al., 

1994; Abbott and Dayan, 1999; Middleton et al, 2012; Adibi et al 2013), it should be 

noted that noise correlation can have different effects on coding efficiency, depending on 

the relationship between the average responses (Averbeck et al., 2006). For neurons 

sharing functional feature selectivity, such as those in the same column, a stimulus 

evokes similar average responses in the units recorded. That is, the average responses to 

two separate stimuli would both be located along the unity line (see Averbeck et al., 

2006, Figure 1). In contrast, in the context of the spatial discriminability here, the 

functional units recorded are two adjacent columns, where a stimulus evokes dissimilar 

average responses, with the primary barrel having the stronger average response. Thus, 

increased noise correlation results in an increase in the separability of the responses (see 

Figure 3.4E). 

 

To explore population correlation and its impact on neural coding, I measured the 

correlation between the averaged population activity in the primary and adjacent barrels. 

As briefly discussed in Methods, the neural signal that supports the detection of a sensory 
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input can be temporally integrated. In particular, decision making often requires 

integration of information over time (Gold and Shadlen 2007; Huk and Shadlen 2005). In 

addition, it is unlikely that an animal makes multiple decisions every few milliseconds on 

a simple stimulus over a very short period of time, as the VSD signal decays after 100 

ms. After the peak frame, the VSD signal decays in the primary barrel and spatially 

spreads throughout the cortex. It can be inferred that these later time frames are not used 

by the animal in this context since the spatially homogeneous cortical activation in later 

frames would preclude spatial discrimination, inconsistent with our previous behavioral 

observations (Ollerenshaw et al., 2014). Therefore, the response in each barrel was 

further time-averaged from the typical onset time (10 ms post-stimulus, consistent with 

the cortical response latency in this pathway) to peak of cortical response (25 ms). 

Although VSD measures population activity, the local VSD signal corresponds well with 

single unit subthreshold whole-cell recording, indicating an overall high level of 

synchrony in subthreshold population activity in the cortex (Petersen et al., 2003b).  This 

is consistent with our result of relatively high noise correlation and with findings in cat 

and monkey visual cortex (Lampl et al, 1999; Chen et al, 2006). However, action 

potentials in the whole-cell recordings are not detected in the VSD signals. Possibly due 

to the diverse receptive field properties of layer 2/3 neurons (Simons, 1978), the low 

firing rate correlation measured in single neuron pairs (Gawne and Richmond, 1993; 

Zohary et al., 1994; Lee et al., 1998; Romo et al., 2003, Middleton et al 2012) is likely a 

nonlinear transformation of the population subthreshold correlation measured with VSD. 

Nevertheless, consistent with part of our findings, Adibi and colleagues (2013) also 

demonstrated that adaptation increased noise correlation, albeit of firing rates in both 

single unit pairs and populations.  

 

Further, I found that adaptation non-monotonically influenced the noise correlation. It has 

been shown that, regardless of stimulus condition, noise correlation in single unit firing 
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rates is inversely proportional to the mean (Adibi et al., 2013).  Here, adaptation 

monotonically decreased the magnitude of the response to the subsequent whisker 

deflection. The little-to-moderate range of adaptation was thus consistent with 

observations from Adibi et al.  The more extreme range of adaptation deviates from this 

prediction, however, likely due to exceedingly strong suppression of activity in this 

regime. This nonlinearity could arise from several mechanisms having opposing effects 

on correlated activity. The pre-stimulus noise correlation indicates stimulus-independent 

correlated activity, likely mediated by internal brain state (Arieli et al., 1996; Kohn et al, 

2009; Middleton et al., 2012).  The stimulus likely induces another stimulus-dependent 

noise correlation, which could be mediated by multiple and opposing mechanisms such 

as background synaptic field and feed-forward inhibition (Middleton et al, 2012). Similar 

to whisking, adaptation likely places the cortex into a de-synchronized state, thus 

decreasing the noise correlation (Poulet and Petersen, 2008). On the other hand, 

adaptation decreases the firing rate in response to the probe stimulus, increasing the noise 

correlation. Additionally, adaptation has been shown to shift the excitation-inhibition 

balance (Heiss et al., 2008), which is implicated in high-frequency gamma, thus possibly 

increasing the noise correlation in the spontaneous state. The nonlinearity in noise 

correlation likely arises from these diverse mechanisms. Figure 3.5G illustrates the 

simplest case where the overall cortical activity is the linear sum of stimulus-independent 

and stimulus-dependent components.  Adaptation could potentially increase the noise 

correlation of one component while decreasing that of the other (traced by the black 

curve, arrow indicates more profound adaptation), making the overall noise correlation 

initially increase but decrease with more profound adaptation. However, further 

investigation is needed to fully elucidate this issue. 

 

Although the results here relate to the effects of passive, bottom-up adaptation on sensory 

processing, there are potential ties to top-down, internally-regulated processing. The 
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adapted state has been shown to display similar effects with those brain states signified 

with high-frequency cortical fluctuation, typically associated with active behavior, such 

as active whisking. In both adapted state and high-frequency active state, the thalamus 

displays tonic firing, TC synapse is depressed, and the cortical representation of a 

stimulus is suppressed. Tonic firing is hypothesized to lead to cortical activities more 

selective of fine features, as opposed to burst firing that leads to a large sensory-evoked 

cortical response, favoring detection (Crick, 1984; Lesica and Stanley, 2004; Lesica et 

al., 2006; Sherman, 2001b). Behaviorally, we demonstrated the improvement of tactile 

discrimination by adaptation in Chapter 2. Relatedly, rodents move their whiskers 

rhythmically when exploring the environment, speculated to enhance tactile 

discrimination (Carvell and Simons 1995; Fanselow and Nicolelis, 1999; Harvey et al., 

2001; Moore 2004). Active whisking suppresses S1 response to a single stimulus 

(Crochet and Petersen, 2006; Fanselow and Nicolelis, 1999; Ferezou et al., 2007), similar 

to what has been demonstrated through passive adaptation (Ollerenshaw et al., 2014), in 

alert or task-engaged animals, and in high-frequency active states (Castro-Alamancos, 

2004; Otazu et al., 2009). Although the direct effects of centrally-regulated, active 

whisking and the indirect effects of the associated brain states on cortical representations 

are not the same as the effects of passive adaptation, the functional similarities of the 

modulation in activity suggest that these aspects may synergistically reinforce the 

continuous control of information transmission described here. Furthermore, the 

continuous effect of adapted states provides further evidence that the brain state is a 

continuum, rather than discrete states (Harris and Thiele, 2011). 
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CHAPTER 4  The intrinsic brain states 

Portions of this chapter have been presented in poster form in the following:  

Zheng, H. J. V.,  Whitmire, C.J., He, B. J. , & Stanley, G. B.,  Context-dependent 

Information Decoding of Sensory-evoked Responses.  

Society for Neuroscience (SfN) meeting. Washington D.C., 2014.  

Computational and Systems Neuroscience (COSYNE) meeting, Salt Lake City, UT, 

2015. 

Society for Neuroscience (SfN) meeting. Chicago, IL., 2015.  

 

4.1 Introduction 

A fundamental pursuit in neuroscience has been to understand how sensory stimuli are 

represented in the brain and how this representation translates to perception. The primary 

somatosensory cortex (S1) is considered one of the most fundamental stages where tactile 

information is processed and has been shown to play an important role in an animal‟s 

perception of a stimulus (O‟Connor et al., 2010; Hutson and Masterton, 1986; LaMotte 

and Mountcastle, 1979; Houweling and Brecht, 2008; Huber et al., 2008; Romo et al., 

2000). An important property of the S1 is the high variability of response to the same 

stimulus under well controlled experimental conditions relative to the lower response 

variability in earlier stages of the pathway, which implies increasingly more complex and 

nonlinear processing along the pathway (Lottem & Azouz, 2011, Arabzadeh et al., 2005, 

Scholvinck et al., 2015).  

 

The cortical response variability arises at least partially from the internal state of the 

brain. Brain state encompasses a variety of cortical and sub-cortical dynamics, including 

short-term synaptic plasticity such as thalamocortical (TC) synaptic depression, network 
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dynamics such as the excitation-inhibition balance, spontaneous spiking and membrane 

potential fluctuations in individual cells, and the correlated activity among a subset of 

cells (Buonomano and Maass, 2009; Harris and Thiele, 2011). Brain state is at least 

partially reflected in the spontaneous activity in the cortex and can be influenced by 

neuromodulators, bottom-up mechanisms such as adaptation and top-down mechanisms 

like arousal (Harris and Thiele, 2011; McCormick et al., 2015). 

 

An important distinction of brain states can be made in sleep and wakeful EEG patterns. 

During sleep, the EEG activity exhibits a characteristic low frequency, large amplitude 

fluctuation, termed “synchronized state”, and switches to a high frequency but small 

amplitude fluctuation, termed “de-synchronized state”, in wakefulness (Moruzzi and 

Magoun, 1949; Steriade et al., 1993). A variety of top-down behavior changes such as 

arousal or active whisking in rodents have also been shown to de-synchronize the cortical 

activity, reflected in the EEG or LFP recordings in the primary sensory cortex, and 

typically associated with thalamic tonic firing and TC synaptic depression (Castro-

Alamancos, 2004; Crochet and Petersen, 2006; Fanselow et al., 2001; Nicolelis and 

Fanselow, 2002; Poulet et al., 2012). Not only does the spontaneous cortical activity 

reflect behavior, it has been shown to shape the cortical dynamics and representation of a 

stimulus. In the synchronized state, the cortex exhibits synchronized low frequency 

fluctuation, and a sensory stimulus evokes a relatively large response in the cortex, 

whereas in the de-synchronized state, the cortical response is suppressed (Castro-

Alamancos, 2004; Crochet and Petersen, 2006; Curto et al., 2009; Ecker et al., 2014; 

Poulet and Petersen, 2008; Poulet et al., 2012). These studies suggest that the cortical 

spontaneous activity provides the context under which the stimulus is encoded and serves 

to identify the characteristics of responses under behavior-relevant states that may 

support different tasks of the sensory system.  
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It has been shown that the state of cortex can spontaneously change, even under 

anesthesia (Clement et al., 2008; Curto et al., 2009), providing an experimental paradigm 

to investigate the cortical variability of sensory-evoked response under well-controlled 

anesthesia without the influence of behavior. Moreover, it has been proposed that the 

synchronized low-frequency fluctuation is generated by the alternation of UP state (when 

cells are depolarized) and DOWN state (where cells are silent or hyperpolarized) 

(McCormick et al., 2015). UP and DOWN states can also occur spontaneously, even 

under anesthesia (Anderson et al., 2000; Petersen et al., 2003b; Sachdev et al., 2004). 

During DOWN state, the cortical response to a stimulus is larger than the response in UP 

state (Li et al., 2009; Petersen et al., 2003b). Hence, within the synchronized state, the 

phase during which the stimulus occurs could also shape the sensory-evoked response.  

 

Here, under controlled anesthesia and without behavioral influences, I examined the 

intrinsic cortical states and the sensory evoked response under these states in the rat 

primary somatosensory cortex. I recorded the local field potential (LFP) in the rat S1 

under controlled anesthesia and showed that a whisker stimulus evokes a larger cortical 

response in the synchronized state than in the de-synchronized state. Within the 

synchronized state, the same stimulus evokes a larger response in the DOWN state than 

in the UP state. From the perspective of an ideal observer, the detectability of the 

stimulus is the highest in the DOWN state, and the spatial discriminability of the stimulus 

is the highest in the de-synchronized state. 

 

4.2 Methods 

4.2.1 Surgery 

All procedures were approved by the Institutional Animal Care & Use Committee at 

Georgia Institute of Technology and in agreement with the National Institutes of Health 
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guidelines. Seven female albino rats (Sprague-Dawley; 250-330g) were sedated with 4% 

vaporized isoflurane, then anesthetized intravenously through the tail vein with a 

Fentanyl cocktail (Fentanyl / Dexmedotodomine / Midazolam 5ug / 150ug / 2mg per mL 

of cocktail, dosed at 0.5ug / 15ug / 0.2mg per mL of cocktail, 1mL/kg). Following the 

initial Fentanyl dose, the animal was mounted on a stereotaxic device (Kopf Instruments, 

Tujunga, CA) on a vibration isolation table. Atropine (0.09 mg/kg, s.c.) was administered 

subcutaneously to keep the lungs clear of fluid. Lidocaine was injected subcutaneously 

into the scalp before the initial incision on the head. In all experiments, saline was 

administered (2 mL/kg/hour) to prevent dehydration. Body temperature was maintained 

at 37°C by a servo-controlled heating blanket (FHC, Bowdoinham, ME). After the 

midline incision on the head, skin and tissue were resected and connective tissue was 

removed. A craniotomy (approximately 3 mm x 4 mm) was drilled on the left hemisphere 

over the primary sensory cortex (stereotaxic coordinates: 0-4 mm caudal to the bregma, 

and 4-7 mm lateral to the midline; Paxinos and Watson, 2007). The dura was left intact. 

A dental acrylic dam was constructed around the craniotomy. At the end of the surgical 

procedures, a light level of anesthesia was maintained with the Fentanyl cocktail. The 

animal was euthanized with an overdose of pentobarbital sodium solution after data 

collection. 

4.2.2 Electrophysiology 

A low-impedance tungsten electrode (< 1M Ω) was lowered into a barrel typically at a 

depth of approximately 300-600 µm below pia using a hydraulic micropositioner (Kopf 

Instruments, Tujunga, CA). A stainless steel skull screw (~1.4 mm in diameter) was 

installed approximately 2-3 mm posterior and medial to the craniotomy and was driven 

approximately 1 mm into the skull to make contact with the cerebral spinal fluid (CSF) 

and the surface of the brain. The skull screw was used as both the electrical ground for 

the animal and the reference for the recording electrode. The recording electrodes were 
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manufactured by FHC (impedance: 300-500K Ω, shank diameter: 75 µm, tip taper angle: 

15-20º, Bowdoin, ME.) or A-M Systems (impedance: 500K Ω, shank diameter: 127 µm, 

tip taper angle: 12º, Sequim, WA). The principle whisker was identified by manually 

deflecting all whiskers that elicited responses at the location of recording and selecting 

the whisker that evoked the strongest response. The process was repeated until the 

strength of response to the principle whisker candidate was unambiguously stronger than 

the responses to all neighboring whiskers. Local field potential was collected at 1K Hz 

with a Cerebus system (Black Rock Microsystems, Salt Lake City, UT) or a TDT system 

(Tucker-Davis Technologies, Alachua, FL). The data collected on Cerebus was high-pass 

(1
st 

order) filtered at 0.3 Hz and low-pass (3
rd

 order) filtered at 7.5K Hz. Because an anti-

aliasing filter was not imposed in the Cerebus system, simultaneous data sampled at 30K 

Hz was analyzed for the frequency content to ensure there was no significant aliasing 

effect. The frequency content (see 4.2.4 Data analysis, Frequency ratio section) 

calculated from 1K Hz data and the 30K Hz data were highly correlated (r > 0.98, p  < 

0.001). The data collected on TDT systems was high-pass filtered at 0.4 Hz and low-pass 

filtered at 500 Hz.  

4.2.3 Vibrissa stimulation 

A multi-layered piezoelectric bending actuator (range of motion: 1 mm, bandwidth: 200 

Hz; Polytec PI, Auburn, MA) or a Galvo motor (Cambridge Technology, Bedford, MA) 

generated vibrissa deflections. The vibrissa was inserted into a 4-cm section of a 20-µl 

glass pipette (inner diameter ~0.65 mm) fixed to the end of a piezoelectric actuator, or 

inserted into a hole on the Galvo motor actuator (inner diameter ~0.65 mm). The end of 

the actuator was then situated 10 mm from the face. Actuator inputs were controlled by a 

programmable, real-time computer. 
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Each vibrissa was individually deflected in the rostral-caudal plane in an exponentially 

rising (τ = 2 ms) and decaying saw-tooth waveform of 17 ms in duration. Each trial had 

5000 ms of pre-stimulus recording. A single deflection (average velocity of 200, 500, or 

1000-1200 °/s) was delivered. Stimulation protocols were presented in a random order 

and repeated 50 - 100 times. Each trial was at least 7 seconds.  

4.2.4 Data analysis 

Normalization: Raw LFP recordings were imported from Cerebus into MATLAB using 

the software package provided by Black Rock. Aberrant trials with exceeding noise 

(where non-stimulus related LFP amplitude was outside of the -4mV to 1mV range) were 

removed. These trials are generally less than 10 per data set and comprise less than 8% of 

the total trials. To account for the response variability across animals, each dataset 

(recordings from 1 barrel, 50-100 trials) was normalized to the mean of that dataset, 

which is the minimum value between stimulus onset and 100 ms post-stimulus of all 

single trials averaged across trials of that data set. The stimulus-evoked response was 

defined as the peak value of each normalized single trial from stimulus onset to 100 ms 

post-stimulus, minus the baseline value at stimulus onset. To ensure that the result did not 

depend on normalization, the same analyses were performed on un-normalized data. The 

results were qualitatively similar (see Results). Baseline subtraction did not qualitatively 

change the results in the de-synchronized and synchronized state. However, the 

difference in the evoked response amplitude in UP and DOWN states was only relative to 

the baseline activity (see Discussion).  

 

Frequency ratio: To quantify the frequency content, the spontaneous activity 1000 ms 

before the stimulus onset was normalized as described above, and the mean value of this 

epoch of spontaneous activity was subtracted.  The frequency content was calculated 

using a fast Fourier transform (data length 1 second, sampling rate 1K Hz). A frequency 
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ratio was defined as the ratio of total amplitude in the 1-4 Hz band to that in the 1-50 Hz 

band, which has been shown to be a good indicator of cortical synchrony (Curto et al., 

2009). The amplitude is the complex modulus of the FFT, , where Re and Im 

are the real and imaginary part of the FFT at the given frequency. Figure 4.2A illustrates 

this definition. Within each dataset, the trials whose frequency ratios were below 33 

percentile of the frequency ratio values within that dataset were classified as high-

frequency trials; trials with frequency ratios above 67 percentile were low-frequency 

trials. The rest were medium-frequency trials (Figure 4.2C).  

 

Phase calculation: The instantaneous phase of the LFP was calculated using a Hilbert 

transform, which convolves the original LFP signal x(t) with the function 1/t to obtain 

the analytical signal y(t).  

                               

The instantaneous phase (t) is the inverse tangent of the ratio of the imaginary and real 

parts of the analytical signal y(t) (Le Van Quyen et al., 2001). This method has been used 

widely in MEG and EEG signals to study phase locking and synchrony in neural signals 

(Le Van Quyen et al., 2001; Pikovsky et al., 2001). The discrete-time analytical signal is 

implemented by MATLAB based on the algorithm introduced by Marple (1999). Figure 

4.3A shows an example of spontaneous LFP activity and its corresponding phase. 

Because the stimulus onset almost always evokes an upward response in the normalized 

LFP activity, the pre-stimulus phases are biased towards –/2 (see Figure 4.3C for 

example). Figure 4.3B shows the histogram of phase values of spontaneous activity (2000 

ms before stimulus onset, bin size 0.05, all normalized datasets were merged to obtain a 

smoother histogram), whereas Figure 4.3D shows the histogram of phase values at 

stimulus onset, with distinct clusters at –/2. Therefore, before calculating the pre-
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stimulus phase, the stimulus-evoked activity was truncated from each trial. To avoid the 

edge effect introduced by truncating, instantaneous phase at 50 ms before the stimulus 

onset was defined as the pre-stimulus phase. Figure 4.3E shows the distribution of the 

instantaneous phase 50 ms before stimulus onset, which is similar to the distribution of 

spontaneous activity phase shown in Figure 4.3B (two-sample Kolmogorov-Smirnov test, 

p > 0.05). The UP state was defined as the period where the normalized spontaneous LFP 

activity was positive, that is, || < /2. The DOWN state was defined as the period where 

the normalized spontaneous LFP activity was non-positive, or, || >= /2. Within each 

dataset, trials that were in the synchronized (low-frequency) state were further parsed into 

UP and DOWN states.  

 

Detection and discrimination.  

Detection performance of the ideal observer was defined as the d‟ between the noise 

distribution and the response distribution. The noise distribution was formed by the pre-

stimulus activity from all trials, which was the normalized LFP averaged over 50 ms pre-

stimulus period. The response distribution was formed by the stimulus-evoked response 

in the primary barrel from all single trials. The trials were first normalized as described 

above, the evoked response was the peak value of the normalized LFP in the 100 ms 

post-stimulus period minus the baseline value at stimulus onset. Discrimination 

performance of the ideal observer was defined as the d‟ between the primary barrel 

response distribution in the adjacent barrel response distribution. Figure 4.4A illustrates 

the tasks for the ideal observer. Because the number of trials in each dataset becomes 

small after being parsed into different states, all trials from all datasets were pooled 

together and a bootstrap method was used to test for statistical significance (Efron and 

Tibshirani, 1993). Half of the data was randomly chosen to calculate detection and 

discrimination performance, and the process was repeated 7 times, same as the number of 

datasets. The error bars represent 1 standard error of the 7 iterations.  
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4.3 Results 

To investigate what information about the brain state may be extracted from the 

spontaneous activity and how the brain state affects the information encoded about the 

stimulus in the sensory-evoked activity, the cortical LFP was recorded in the rat barrel 

cortex in both the primary barrel and an adjacent barrel. The LFP has been shown to be a 

reliable measure of brain state in a range of studies  (Curto et al., 2009; Harris and Thiele, 

2011; Haslinger et al., 2006; Hirata and Castro-Alamancos, 2010; Okun et al., 2010; 

Poulet et al., 2012).  Each trial of spontaneous activity recording was followed by a single 

whisker deflection on the primary whisker. A single low-impedance tungsten electrode 

was used to record the LFP in the primary barrel, using a skull screw as the ground and 

the reference (see Methods). In a subset of experiments, a second electrode recorded the 

LFP simultaneously in an adjacent barrel. Figure 4.1A illustrates the experiment setup 

and Figure 4.1B shows an example data set from a primary barrel recording of one 

animal. Single-trial raw LFP recordings are shown in grey, and the black trace represents 

the average of 50 single trials. Using the spontaneous activity, I classified the trials into 

the de-synchronized and the synchronized states and the UP/DOWN states within the 

synchronized state and quantified the effect of the brain state on the evoked response to a 

single stimulus and the information carried about the stimulus. 
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Figure 4.1 Experiment setup. 

A. The experiment setup. A low-impedance electrode records the LFP activity in the 

primary barrel of an anesthetized rat. A second electrode records the LFP in an adjacent 

barrel in a subset of experiments. 

B. An example raw LFP recording from one barrel of one animal. Grey lines are single 

trials and black line is the average across 50 trials.  

 

 

4.3.1 Brain state modulates sensory-evoked activity  

 

Although the brain states categorized by cortical fluctuation frequency were originally 

discovered in sleep and wakefulness, more recent studies have indicated that the 

difference in cortical frequency content also exists in smaller ranges of brain states such 

as quiet wakefulness and alertness, even spontaneously under anesthesia (Castro-

Alamancos, 2004; Clement et al., 2008; Curto et al., 2009; Hasenstaub et al., 2007; Hirata 

and Castro-Alamancos, 2010; Luczak et al., 2013; Poulet et al., 2012). As previously 

described, frequency content is typically associated with cortical synchrony. More low-

frequency content signifies higher cortical synchrony, and more high-frequency content 

signifies a relatively de-synchronized state (Curto et al., 2009; Poulet and Petersen, 

2008). Here, I examine the brain states that occur spontaneously without behavioral 

influence or stimulation and how it influences the representation of an external stimulus.  

 

First, the trials were classified into “de-synchronized” (relatively more high-frequency) 

and “synchronized” (relatively more low-frequency) state using the frequency content in 

the pre-stimulus spontaneous LFP activity. Figure 4.2A illustrates the analysis of the 

frequency content in the spontaneous activity in relation to the evoked response. Each 

single trial within each data set was normalized to the mean of that data set (see 

Methods). The evoked response is the peak value in the 100 ms window post-stimulus 
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relative to the baseline at stimulus onset. The frequency spectrum for the pre-stimulus 

spontaneous activity was calculated for each trial using a Fast Fourier Transform (FFT, 

data length 1 second). To quantify the frequency content in the spontaneous activity, a 

frequency ratio was defined as the ratio of total amplitude in the 1-4 Hz band to that in 

the 1-50 Hz band in 1000 ms of spontaneous activity immediately preceding the stimulus 

(Curto et al., 2009, see Methods). A larger frequency ratio indicates more low-frequency 

content and signifies more synchronized cortical activity. To ensure the frequency 

content below 2 Hz was adequately captured using a data length of 1 second, pure 

sinusoid signals with amplitude of 1 and a given frequency were generated and the errors 

estimating the amplitude of the sinusoid signal using various data lengths were 

calculated. For each given frequency and data length, the error is defined as 1 (known 

amplitude of the sinusoid) minus the amplitude of the FFT at the given frequency. Figure 

4.2B shows the error for each given frequency and data length. The lowest frequency 

used in frequency ratio calculation was 1 Hz, and the error estimating the frequency at 1 

Hz using FFT of a data length of 1 second was 0.01, which is 1% of the original 

amplitude of the sinusoid signal.  

 

Within each data set, trials with frequency ratio below the 33 percentile value were 

classified as de-synchronized trials, those above the 67 percentile value were classified as 

synchronized trials, and the intermediate ones were classified as medium frequency trials. 

Figure 4.2C illustrates this classification. There were no distinct clusters of frequency 

ratio values at high or low ranges, suggesting that the degree of synchrony is likely a 

continuum. Figure 4.2D shows two example single trials of LFP recordings. Note that the 

synchronized trial (red, frequency ratio = 0.52) exhibited relatively large but slow 

oscillations in the pre-stimulus activity, and has a larger stimulus-evoked response, in 

comparison to the de-synchronized trial (blue, frequency ratio = 0.36). The inset shows 

their respective frequency spectrum of 1000 ms pre-stimulus activity (FFT amplitude, see 
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Methods). Figure 4.2E shows the frequency spectrum of synchronized trials vs. de-

synchronized trials averaged over 16 data sets, and the thin lines represent 1 standard 

error. Note that when compared to the synchronized frequency spectrum (red), the de-

synchronized spectrum (blue) showed not only a decrease in low-frequency range but 

also an increase in the high-frequency range. Therefore, the difference in the frequency 

content was not simply due to the fluctuation of physiological effects such as heart rate 

(approximately 4 Hz) and respiratory rate (approximately 1 Hz). The difference in 

frequency ratio was also not simply due to the difference in total amplitude of the 

frequency spectrum in different states, as the total amplitude from 1-50 Hz band was not 

different across states (Fig 4.2E inset, error bar = 1SE, paired t-test, n = 16, p > 0.05). 

Note that a relatively small increase in the high frequency content on the logarithm scale 

can be large, and even small changes in frequency content could have significant effects 

on perception and behavior (Cardin et al., 2009; Poulet et al., 2012; Sachidhanandam et 

al., 2013).  Figure 4.2F shows an example data set of 100 ms of spontaneous activity and 

sensory-evoked response for synchronized and de-synchronized states. Thick lines 

represent the average across trials, thin lines represent +/-1 standard error. The inset 

summarizes the sensory-evoked response amplitude across the degree of synchrony, 

averaged over 16 datasets. Error bars are 1 standard deviation. The stimulus was a strong 

whisker deflection (1000-1200 º/s). The same stimulus evoked the largest LFP amplitude 

in the synchronized state, significantly larger than both de-synchronized and the medium-

frequency states (de-synchronized mean: 0.97 +/- 0.014 SE, medium frequency mean: 

0.99 +/- 0.016 SE,    synchronized mean: 1.04  +/- 0.01 SE, paired t-test, n = 16, p<0.05). 

The un-normalized data show qualitatively similar results (de-synchronized mean: -929 

µV +/- 254 SE, medium frequency mean: -944 µV +/- 266 SE,    synchronized mean: -

992 µV +/- 269 SE, paired t-test, n = 16, p<0.05). 
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Figure 4.2  The degree of cortical synchrony modulates stimulus-evoked activity.  

A. Illustration of analysis. The frequency ratio was defined as the ratio of the total 

amplitude in 1-4 Hz to that in 1-50 Hz in the 1000 ms of spontaneous activity before 

stimulus onset. The sensory evoked response is the maximum value in 100 ms window 

after stimulus onset, minus the baseline at 1 ms before stimulus onset. B. Quantification 
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of error estimating frequency content using FFT of different time window sizes 

(horizontal axis). At each given frequency, error was defined as the difference between 

the known amplitude of generated sinusoid and the amplitude of the FFT at the given 

frequency. C. An example data set of frequency ratios and illustration of trial 

classification. Within each set, trials were classified by the percentile of frequency ratio 

values. D. An example synchronized trial where the spontaneous activity exhibits low 

frequency fluctuation (red, frequency ratio = 0.52), and an example de-synchronized trial 

(blue, frequency ratio = 0.36). The inset shows their respective frequency spectrum. E. 

The average frequency spectrum of synchronized trials (red) and de-synchronized trials 

(blue). The thin lines represent +/-1 standard error (n = 16). Note that the total amplitude 

in the 1-50 Hz band was not different across states (inset, paired t-test, p > 0.05). F. An 

example set of stimulus-evoked responses for synchronized trials (red), and de-

synchronized trials (blue). The thick lines (middle) represent the mean across trials, the 

thin lines represent +/-1 standard error bands. Insets: the amplitude of evoked responses 

across states, averaged over 16 data sets, error bars represent 1 standard error.  

 

Furthermore, it has been proposed that the low-frequency synchronized state is generated 

by the alternating UP (cortical cells are depolarized) and DOWN (cortical cells are silent) 

states (McCormick et al., 2015; Petersen et al., 2003b), and it has been shown that during 

the DOWN state, the cortical response to a stimulus is larger than the response in the UP 

state (Petersen et al., 2003b; Li et al., 2009; Sachdev et al., 2004). Without accounting for 

UP and DOWN states, the effect of the synchronized state on sensory-evoked response 

can be obscured. Therefore, I further parsed the synchronized state into UP and DOWN 

states. 

 

Because the synchronous depolarization (UP) and hyperpolarization (DOWN) produce 

the low frequency, large amplitude fluctuation (McCormick et al., 2015), UP states 

should correspond to time periods where the normalized LFP activity is positive, and 

DOWN states correspond to negative periods, which can be informed by the 

instantaneous phase of the LFP activity. Therefore, a Hilbert transform was used to 

calculate the phase of pre-stimulus spontaneous activity in order to classify the 

synchronized trials into UP/ DOWN states (see Methods). The Hilbert transform has been 
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used widely in MEG and EEG signals to study phase locking and synchrony in neural 

signals (Le Van Quyen et al., 2001; Pikovsky et al., 2001). Figure 4.3A shows an 

example single-trial spontaneous LFP (black trace) and its phase  (red trace). The phase 

values range from -π to π. The peak of spontaneous activity corresponds to a phase value 

of 0, and the trough has a phase of -π or π because the phase value wraps around every 

2π. The transition from a positive period of spontaneous fluctuation (UP state) to the 

negative period of the fluctuation (DOWN state) has a phase of π/2 and the transition 

from DOWN to UP state has a phase of -π/2. The UP state can be identified when || < 

π/2, and the DOWN state when || >= π/2. Figure 4.3B shows the distribution of phase 

values for spontaneous activity (at 2 s before stimulus onset, bin size 0.05 π), pooled 

across all synchronized trials of 16 data sets. In order to classify trials where the stimulus 

was delivered during the UP or DOWN state, the phase at the stimulus onset was 

extracted. However, because the stimulus almost always evoked an upward response in 

the normalized LFP activity, the phase at stimulus-onset is biased towards –/2. An 

example trial is shown in Figure 4.3C. Figure 4.3D shows the distribution of phase values 

at stimulus onset, with a distinct cluster at –/2 (bin size 0.05 π, pooled across all 

synchronized trials of 16 data sets). Therefore, the stimulus-evoked activity was truncated 

from each trial. To avoid the edge effect introduced by truncating, instantaneous phase at 

50 ms before the stimulus onset was defined as the pre-stimulus phase. Figure 4.3E 

shows the distribution of the instantaneous phase 50 ms before stimulus onset, which is 

similar to the distribution of spontaneous activity phase shown in Figure 4.3B (two-

sample Kolmogorov-Smirnov test, p > 0.05). Figure 4.3F shows an example dataset of 

sensory-evoked response in the UP and DOWN states (mean +/- 1 SE). The inset 

summarizes the evoked response amplitude across all data sets (n = 16, paired t-test, p < 

0.05). The evoked amplitude was larger in the DOWN state (UP mean: 0.93 +/- 0.02 SE, 

DOWN mean: 1.1  +/- 0.02 SE, paired t-test, n = 16, p<0.05), consistent with the findings 
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in the literature (Petersen et al., 2003b; Sachdev et al., 2004; Li et al., 2009). The un-

normalized data show qualitatively similar results (UP mean: -907 µV +/- 245 SE, 

DOWN mean: -1041 µV +/- 283 SE, paired t-test, n = 16, p < 0.05). 

 

 



www.manaraa.com

 93 

Figure 4.3  The UP/DOWN states modulate stimulus-evoked activity.  

A. An example of the phase value of the spontaneous LFP oscillation. B. The distribution 

of phase values of spontaneous activity (2 s before stimulus onset) pooled across all data 

sets. C. An example of the stereotypical upward deflection of the stimulus-evoked 

activity biasing the phase near and post stimulus-onset. D. The distribution of phase 

values at stimulus onset pooled across all data sets. There is a distinct cluster centered 

around -/2, due to the effect of the stimulus-evoked activity. E. The distribution of 

phase values at 50 ms before stimulus-onset, after the truncation of stimulus-evoked 

activity pooled across all data sets. The distribution was not different from the 

spontaneous activity phase distribution shown in B (two-sample Kolmogorov-Smirnov 

test, p > 0.05). F. An example set of sensory-evoked response in UP and DOWN states. 

The inset summarizes the amplitude of evoked response across all data sets (n = 16, 

paired t-test, p < 0.05).  

 

4.3.2 Brain state modulates the information encoded about the stimulus 

The results so far show that spontaneous activity carries information about the state of the 

cortex and these brain states modulate the sensory-evoked response. This prompts the 

hypothesis that the information encoded about the stimulus is also state-dependent. To 

test this, an ideal observer analysis was performed to quantify the detectability and 

discriminability of the stimulus (a 200 º/s deflection on a single whisker) across the 

cortical states identified above: de-synchronized and synchronized states, and within the 

synchronized state, the UP and DOWN states. Figure 4.4A illustrates the detection and 

discrimination tasks. An example set of pre-stimulus and evoked response in the primary 

barrel (black) and simultaneously recorded adjacent barrel (grey) is shown. The thick 

lines are the average across trials, and the thin lines are +/-1 standard deviation. The 

detection task is illustrated on the left. The task is to separate the response distribution in 

the primary barrel from the noise distribution, which was formed by the pre-stimulus 

activity across trials. The pre-stimulus activity was the average over 50 ms of LFP 

activity before stimulus onset. The detectability was defined as the d‟ value between the 

noise distribution and the response distribution in the primary barrel. The discrimination 

task is illustrated on the right. The task is to discriminate the spatial location of the 
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stimulus given the responses in two barrels, one primary to the whisker stimulus, the 

other adjacent. The d‟ between the primary response distribution and the adjacent 

response distribution quantifies how well the ideal observer can separate the primary 

barrel response from the adjacent barrel response, thus how well the primary whisker can 

be identified.  

 

 

Figure 4.4 The detectability and discriminability of the stimulus are state-

dependent.  

A. An illustration of the detection and discrimination tasks for the ideal observer. The 

detection task is to separate the evoked response distribution from the noise distribution. 

The spatial discrimination task is to separate the distribution of evoked response in the 
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primary barrel from that in an adjacent barrel. B. The noise and response distribution in 

the synchronized and de-synchronized states. C. The noise and response distribution in 

the UP/ DOWN states within the synchronized state. D. The detectability of the stimulus 

across states as measured by d‟ between noise and response distributions. E. The 

response distributions in the primary and an adjacent barrel in the synchronized and de-

synchronized states. F. The response distributions in the primary and an adjacent barrel in 

the UP/DOWN states within the synchronized state. G. The spatial discriminability of the 

stimulus across states as measured by d‟ between the primary barrel response distribution 

and the adjacent barrel response distribution. 

 

 

Figure 4.4B-D summarizes the detection performance. Figure 4.4B shows the 

distributions of noise and primary barrel response to a 200 º/s deflection on a single 

whisker in the synchronized and de-synchronized states, and figure 4.4C shows the 

distributions in the UP and DOWN states. The distributions shown consist of trials 

pooled from all datasets (n = 7, see Methods). Given the larger evoked response in the 

synchronized state on average (see Figure 4.2F inset), one may speculate that the 

synchronized state should favor the detectability of the stimulus, possibly serving as a 

wake-up call to the animal that is typically in a less behaviorally alert state (Crick, 1984; 

Fanselow and Nicolelis, 1999; Sherman 2001a). However, when quantified against the 

noise distribution, the detectability is higher in the de-synchronized state (Figure 4.4D, 

paired t-test, n = 7, p < 0.05), largely due to the less variable noise distribution (see 

Figure 4.4B). Furthermore, when the synchronized state was parsed into UP and DOWN 

states, the detectability was the highest in the DOWN state, due to a hyperpolarized noise 

floor (see Figure 4.4C). Figure 4.4E-G summarizes the spatial discrimination 

performance. Figure 4.4E shows the distributions of the primary barrel response and an 

adjacent barrel response to a 200 º/s deflection on a single whisker in the synchronized 

and de-synchronized states, and figure 4.4F shows the distributions in the UP and DOWN 

states. The spatial discriminability of the stimulus is higher in the de-synchronized state 

than in the synchronized state, including UP and DOWN states (Figure 4.4G, paired t-

test, n = 7, p < 0.05). These results suggest that, the spontaneous activity carries the 



www.manaraa.com

 96 

information about the state of the cortex, which modulates both the sensory evoked 

response and pre-stimulus activity, resulting in different detectability and spatial 

discriminability about the stimulus across brain states. 

 

4.4 Discussion 

The results in this chapter show that pre-stimulus spontaneous activity in S1 carries 

relevant information about the state of the context. Specifically, the synchronized and de-

synchronized states can be identified by the frequency content of the spontaneous 

activity, and the UP/DOWN states within the synchronized state can be further extracted 

by the instantaneous phase of the spontaneous activity.  These cortical states modulate the 

sensory-evoked response and the information conveyed about the stimulus. 

 

The frequency of spontaneous cortical fluctuation, measured with EEG or LFP, has long 

been tied to the arousal level of the animal, with high frequency, small amplitude 

fluctuation signifying alert states and low frequency, large amplitude fluctuation 

signifying the other end of the arousal spectrum like sleep and anesthesia (Steriade et al., 

1993). In the de-synchronized state, the cortical neurons are less correlated, and is 

typically associated with increased tonic firing of the thalamus (Castro-Alamancos, 2004; 

Crochet and Petersen, 2006; Curto et al., 2009; Poulet and Petersen, 2008; Poulet et al., 

2012) that results in short-term thalamocortical synaptic depression (Castro-Alamancos, 

2002; Chung et al., 2002). Thus, the response to an external stimulus in the de-

synchronized state is likely to be more suppressed due to weaker thalamocortical synaptic 

efficacy (Harris and Thiele, 2011), consistent with the results shown here (Figure 4.2F). 

 

It has been proposed that the slow cortical fluctuations in the synchronized state is 

generated by the alternation between UP (cells are depolarized) and DOWN (cells are 
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silent or hyperpolarized) states (McCormick et al, 2015). Although UP and DOWN states 

were originally discovered with whole cell recordings in single cells, the mechanisms of 

UP and DOWN states involve, respectively, the synchronous activation and refraction of 

local recurrent networks (see below), which can be reasonably captured by the LFP 

recordings here in a cortical column (Harris and Thiele, 2011; Crochet and Petersen, 

2006; Okun et al., 2010; Poulet and Petersen, 2008).  During the DOWN state, cortical 

neurons are largely silent. An excitatory input, whether spontaneous (could be triggered 

by single oscillating cell, Buszaki et al., 2004) or driven by inputs from subcortical or 

intracortical regions, ignites the recurrent excitation network and also engages the local 

recurrent inhibition, pushing the cortex into the UP state (McCormick et al., 2015). Over 

time, refractory mechanisms, such as synaptic depression and Ca
+ 

and Na
+
 dependent K

+
 

conductance, build up until the network is unable to maintain activity and falls into the 

DOWN state again (McCormick et al., 2015). Consistent with the literature, our results 

here show that the sensory evoked responses during the DOWN state are relatively larger, 

likely because the cortex is initially silent and the inhibitory network is not yet engaged. 

In the UP state, a number of explanations have been offered in the literature for the 

relatively small response - the inhibitory cells are engaged, driving force for excitation is 

reduced in depolarized state, input resistance decreases in UP state, and the AP threshold 

is higher in the UP state (McCormick et al., 2015; Petersen et al., 2003b; Sachdev et al., 

2004).  

 

Given that the evoked response in the synchronized state is larger on average and that 

synchronized state is typically associated with lower level of arousal, one may speculate 

that the synchronized state should favor the detectability of the stimulus, possibly serving 

as a wake-up call to the animal that is typically in a less behaviorally alert state (Crick, 

1984; Fanselow and Nicolelis, 1999; Sherman 2001a). However, we found that the 

detectability was higher in the de-synchronized state, consistent with the behavior report 
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from Sachidhanandam et. al. (2013), where mice trained on a detection task exhibit less 

low-frequency content in the cortical cell membrane voltage fluctuation. The noise 

distribution in the de-synchronized state was less variable due to small-amplitude 

spontaneous fluctuations, and the smaller noise variability out-compensates the smaller 

average evoked amplitude, resulting in a larger d‟ between the noise and response 

distributions. Furthermore, the synchronized state contains both UP and DOWN states, 

both known to modulate sensory evoked response, possibly obscuring the detectability in 

the synchronized state. Indeed, when the synchronized state was further parsed into UP 

and DOWN states, we found that the detectability was better in the DOWN state than in 

the de-synchronized state. The spatial discriminability of the stimulus (d‟ between 

primary and adjacent response distributions) was better in the de-synchronized state than 

in the synchronized state, including both UP and DOWN states, consistent with the idea 

that the de-synchronized state is typically associated with arousal and alertness. 

Furthermore, there is a trade-off of detectability and discriminability between UP and 

DOWN states – detectability is better in the DOWN state because of a lower noise floor 

and discriminability is better in the UP state because of smaller response variability. This 

suggests that the brain state has dynamic impacts on the information conveyed about the 

stimulus, and may help the animal cope with different demands of the sensory tasks. 

 

The sensory-evoked response was defined as the peak amplitude of the LFP relative to 

the baseline activity at stimulus onset. Subtracting the baseline did not make a qualitative 

difference in evoked responses between the de-synchronized and synchronized states. 

However, the difference in evoked responses between UP and DOWN states was only 

relative to the baseline. This is consistent with the findings in the literature that the post-

synaptic potential (PSP) in the UP state is smaller, but only relative to its higher baseline 

membrane potential that defines the UP state (Petersen et al., 2003b; Sachdev et al., 

2004).  Implicit in this analysis is the assumption that the neurons downstream from S1 
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are able to extract the difference of evoked response strength between UP and DOWN 

states. One possible scenario is that the elevated spontaneous activity in S1 neurons 

during UP state may cause short term synaptic depression on the downstream neurons, 

making them less excitable in response to a stimulus input delivered during UP state. In 

addition, despite being closer to the action potential threshold, S1 cells fire less actions 

potentials in the UP state in response to sensory input, thus sending less output to the 

downstream neurons (Petersen et al., 2003b; Sachdev et al., 2004). Nonetheless, the UP 

and DOWN states are cycles within the synchronized state, which has its behavior 

correlates. Whether the different evoked responses in UP and DOWN states make a 

difference in behavior needs further investigation.   

 

The difference between the evoked responses in the de-synchronized and synchronized 

trials shown here was quantitatively small. This is likely due to both the fact that the 

brain states state investigated in this work are intrinsic under anesthesia without the 

influence of explicit stimulation or behavioral influences, and the fact that the 

synchronized state contains two distinct states, UP and DOWN states known to modulate 

sensory evoked responses. Although the EEG frequency signature was discovered in 

sleep and wakefulness, and brain state was originally thought to be a dichotomy between 

sleep and wakefulness, more modern studies have shown the slow oscillation also exists 

during drowsiness or inattentiveness in the awake state, suggesting brain state is likely a 

continuum as opposed to distinct states (Castro-Alamancos, 2004; Crochet and Petersen, 

2006; Curto et al., 2009; Poulet and Petersen, 2008; Poulet et al., 2012; Zagha et al., 

2013). The spontaneous cortical states under anesthesia could represent a relatively small 

range in the continuous spectrum. Although there are certainly differences between 

anesthesia and sleep, under the maintenance phase of general anesthesia, the cortex also 

displays low frequency EEG that closely resembles the EEG pattern in slow wave sleep, 

and shares some common mechanisms with sleep (Brown et al., 2010). Both Fentanyl 
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and non-REM sleep reduce acetylcholine and are typically associated with burst firing in 

the thalamus (Brown et al., 2010). The difference between the synchronized and de-

synchronized trials shown here under Fentanyl could be similar to, and possibly smaller 

than, the difference between low frequency EEG in non-REM sleep and higher frequency 

EEG in REM sleep. 

 

In conclusion, the results here suggest that, different modes of frequency oscillations can 

occur without explicit stimulation of relevant nuclei for neuromodulation or behavioral 

influence. The spontaneous activity carries the information about these brain states that 

have distinct impacts on the decoding of the stimulus. The state dependence of sensory 

responses may help support different demands of the sensory system under various 

behavioral states and tasks. Finally, the states demonstrated are possibly a small part of a 

dynamic and high-dimensional brain state space that would require simultaneous 

recording in awake, behaving animals to more fully elucidate the mechanisms and 

functions of cortical dynamics. 
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CHAPTER 5  CONCLUSION AND FUTURE WORK  

This thesis examines the dynamics of sensory stimulus encoding under the context of 

brain state in the rat primary somatosensory cortex (S1). I show that sensory adaptation 

modulates brain state through bottom-up thalamic mechanisms that result in fundamental 

changes in the information conveyed about the stimulus. The intrinsic brain states are at 

least partially reflected in the spontaneous activity in S1, which modulate sensory evoked 

response and the information conveyed about the stimulus. The results suggest that brain 

state is a multi-dimensional continuum, where multiple mechanisms can coexist and 

interact. Interpreting sensory stimuli under the context of brains state improves the 

efficiency in extracting relevant information from the cortical representation of the 

stimulus. The regulation of brain state through behavior, cognitive functions, and 

thalamic mechanisms thus provides support for different demands on the sensory system 

depending on the type of task. 

 

5.1 Sensory adaptation induces bottom-up modulation on brain state 

The results in Chapter 2 demonstrate that sensory adaptation changes the cortex from a 

state where a stimulus evokes a relatively large response emphasizing the presence of the 

stimulus to a state where the same stimulus evokes a more suppressed response and 

spatial localization is enhanced. This tradeoff between the detection and discrimination of 

the stimulus is true in both the ideal observer of the cortex of the anesthetized rat and in 

behavioral responses from awake animals.  

 

Although the adapted state and the de-synchronized state are two fundamentally different 

brain states, it is worth noting that adaptation shares common effects and mechanisms 
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with the de-synchronized state, especially the active whisking state, in their effects on 

behavior and evoked neural responses. In comparison to their respective opposing states 

(non-adapted state, or synchronized/quiescent non-whisking states), the cortical response 

to a stimulus is suppressed (Castro-Alamancos, 2004; Crochet and Petersen, 2006; 

Ferezou et al., 2007; Ollerenshaw et al., 2014; Poulet et al., 2012; Sheth et al., 1998; 

Chung et al, 2002; Khatri et al., 2004; Moore, 2004; Webber and Stanley, 2004; Boloori 

and Stanley, 2006; Higley and Contreras, 2007; Khatri et al., 2009; Ganmor et al., 2010). 

In behavior studies where the animal is engaged in a task, or actively whisking, the cortex 

also demonstrates suppression in sensory-evoked activity, albeit without the measurement 

of spontaneous frequency fluctuation (Fanselow and Nicolelis, 1999; Otazu et al., 2009). 

Following adaptation, the animal and the ideal observer can better perform a whisker 

spatial discrimination task (Ollerenshaw et al., 2014).  There are many examples in the  

literature of enhanced stimulus feature discriminability following adaptation (Vierck and 

Jones, 1970; Goble and Hollins, 1993;  Tannan et al., 2006; Adibi et al., 2013; Fairhall et 

al., 2001; Lesica et al., 2007; Maravall et al., 2007; Wang et al., 2010); and active 

whisking is widely thought to enhance tactile sensation (Carvell and Simons 1995; 

Fanselow and Nicolelis, 1999; Harvey et al., 2001; Moore 2004). In both adaptation and 

de-synchronized state, the cortical suppression is tightly linked to thalamocortical 

synaptic depression (Castro-Alamancos, 2002, 2004; Chung et al., 2002; Hirata and 

Castro-Alamancos, 2010). In the case of de-synchronized states, it has been shown that 

acetylcholine release can depolarize the thalamic cells (Steriade et al., 1990; Williams et 

al., 1994), which in turn facilitates tonic firing in the thalamus (McCormick, 1992). In the 

adapted state, it has been shown that the thalamic firing is desynchronized, likely a result 

of thalamic depolarization and tonic firing (Temereanca et al., 2008; Wang et al., 2010; 

Whitmire et al., submitted). These pieces of evidence strongly suggest that although 

active whisking has additional top-down control pathways, passive adaptation and active 

whisking share common thalamic mechanisms and result in similar changes in behavior.  
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What is the function of rapid cortical suppression, and why is it associated with better 

discriminability of the stimulus? In the context of detection and spatial discrimination 

task in this thesis, the initial conjecture was that the larger S1 response in non-adapted 

state produces more discernable signal for the ideal observer and possibly for the animal 

for a better detection, and the spatially constrained signal produces a bigger difference 

between the average activity in primary and adjacent column for a better spatial 

discrimination. While it is true that a larger cortical response would form a response 

distribution farther removed from the noise distribution, it may carry out other functions 

to facilitate detection. The spatially large response may facilitate communication with 

other cortical areas and projections to neuromodulatory nuclei to promote alertness. The 

results in Chapter 3 show that the difference between primary and adjacent column 

actually did not change significantly with adaptation, but it was rather the reduction in 

variability and change in the correlation between primary and adjacent column activity 

that determined the discriminability of the stimulus. The change in variability and neural 

correlation is often seen in brain state changes, such as in attention and adaptation (Adibi 

et al., 2013; Cohen and Maunsell, 2009; Ecker et al., 2014; Harris and Thiele, 2011; 

Kohn et al., 2009; Scholvinck et al., 2015). The suppressed cortical response may 

represent localized processing. Once the animal has already been alerted by the first 

stimulus in the non-adapted or drowsy state, the processing of known stimuli may not 

require other sensory information integration or a motor response and can thus be 

localized in the primary column.  

 

5.2 Information theory and sensory stimulus decoding 

As the animal forms perception from a moment-to-moment basis, it is imperative to 

quantify the information carried about the stimulus on a trial-to-trial basis. Parallel to 
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animal behavior, the ideal observer analysis of neural activity using information theory 

provides us with the knowledge of what information may be available in the brain to the 

animal and what calculation the brain may be performing to extract this information 

about the stimulus. As a model for behaviorally relevant information carried about the 

stimulus, this thesis focuses on the detectability and the spatial discriminability of the 

stimulus in the vibrissa pathway using detection theory (Macmillan and Creelman, 2004).  

 

As hypothesized by many others (Sheth et al., 1998; Sherman, 2001a,b; Fanselow and 

Nicolelis 1999; Moore 2004; Castro-Alamancos, 2002), the initial conjecture about the 

detectability and discriminability modulated by sensory adaptation was that the larger S1 

response in non-adapted state favors detection, and the spatially constrained signal favors 

spatial discrimination. However, the average response alone does not dictate the 

information conveyed (Averbeck et al., 2006; Pouget et al., 1999).  Detectability depends 

on the distance between the mean of the noise distribution and the mean of the response 

distribution and their overall variance, not simply the mean of the response as initially 

speculated. In the de-synchronized state, the detectability is better, contrary to speculation 

in the literature (Sherman, 2001a,b; Fanselow and Nicolelis 1999; Moore 2004) because 

the lower variability of the noise distribution (due to the high-frequency, small-amplitude 

fluctuations in the de-synchronized state) out-compensates the smaller mean of the 

evoked response.  

 

In the adapted state, the main factor shaping the discriminability was the noise correlation 

of activation across cortical columns. The initial conjecture that spatially sharpened 

response may induce a larger difference between the mean of primary column response 

and the adjacent column response was not true. Although many studies point out the peril 

of noise correlation in coding efficiency (Zohary et al., 1994; Abbott and Dayan, 1999; 

Middleton et al, 2012; Adibi et al 2013), it should be noted that noise correlation can 
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have different effects on coding efficiency, depending on the relationship between the 

average responses (Averbeck et al., 2006). For neurons sharing functional feature 

selectivity, such as those in the same column, a stimulus evokes similar average 

responses in the units recorded. That is, the average responses to two separate stimuli 

would both be located along the unity line. As a result, when the response clusters are 

more elongated due to higher noise correlation, they would become more overlapped (see 

Averbeck et al., 2006, Figure 1). In contrast, in the context of the spatial discriminability 

here, the functional units recorded are two adjacent columns, where a stimulus evokes 

dissimilar average responses, with the primary barrel having the stronger average 

response. In this scenario, increased noise correlation making the response clusters more 

elongated results in an increase in the separability of the responses. 

 

For any given recording technique, the ideal observer analysis using information theory 

provides us with the optimal information that is available in the neural activity on a trial-

to-trial basis. Combined with animal task performance, we can speculate what decoding 

strategy the brain may use to produce the observed behavior. 

 

5.3 The diverse mechanisms regulating the brain state  

A variety of processes are known to influence the brain state, varying in circuitry 

mechanisms, time scale, and specificity. Exemplified in this thesis are the effect of 

sensory adaptation on brain state through thalamic mechanisms and intrinsic de-

synchronized/synchronized and UP/DOWN states that result in the dynamic regulation of 

detectability and discriminability of the stimulus. In the literature, top-down behavior 

processes such as wakefulness and intra-cortical processes have also demonstrated 

modulatory effects on brain state and sensory-evoked response, some of which have been 

found to also involve bottom-up feed forward processes (Castro-Alamancos, 2004; 
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Crochet and Petersen, 2006; Harris and Thiele, 2011; Poulet and Petersen, 2008; Poulet et 

al., 2012; Zagha and McCormick, 2014; Zagha et al., 2013). Active whisking for 

example, has been shown to suppress low frequency power in cortical LFP and 

desynchronize the cortex (Poulet et al., 2012). Active whisking is considered an 

internally generated process, as whisking does not depend on the afferent infraorbital 

nerve (Fee et al., 1997; Poulet et al., 2012). However, the modulatory effects of whisking 

on the cortex are not only associated with tonic firing of the thalamus but also abolished 

with the inactivation of the thalamus (Poulet et al., 2012). The similar effects on the state 

of S1 by the stimulation of vM1 however, are independent of the thalamus (Zagha et al., 

2013), suggesting diverse and dynamic circuitries involved in brain state regulation.  

 

The time scale of action and spatial specificity in brain state regulation is also diverse. 

Neuromodulators have been shown to play a major role in brain state modulation. For 

instance, norepinephrine has been shown to be critical in wakefulness (Constantinople 

and Bruno, 2011). Acetylcholine induces high frequency fluctuations in the cortex, 

facilitates wakefulness, and can also depolarize thalamic cells (Williams et al., 1994; 

Steriade et al., 1990; McCormick, 1992). In comparison to fast mechanisms such as 

thalamocortical short-term synaptic depression (sub-second time scale, Chung et al., 

2002), neuromodulators act on a much longer time scale (seconds or longer) and have 

more diffuse and long-range projections (Williams et al., 1994; Steriade et al., 1990; 

McCormick, 1992; Castro-Alamancos and Oldford, 2002). While adaptation in the rat 

whisker system has been shown to be column-specific (Katz et al., 2006), 

neuromodulators typically have a much wider and longer projection range and can affect 

a larger, even multiple cortical areas (Harris and Thiele, 2011). Low-frequency 

fluctuation and rhythms have also been shown to affect a larger cortical area, and can be 

part of a travelling wave (Buzsaki and Draguhn, 2004; Csicsvari et al., 2003; Ferezou et 

al., 2006, 2007; Harris and Thiele, 2011; Luczak et al., 2007; Petersen et al., 2003b; 
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Steriade, 2001). The diverse time scale and spatial specificity of multiple modulating 

mechanisms could help the animal cope with different demands placed on the sensory 

system depending on the task – whereas distinguishing tactile features may require only 

local changes to enhance tactile sensation on a fast moment-to-moment basis, other tasks 

such as locating a prey require full alertness that may require long lasting global changes 

and coordination among multiple sensory and motor areas. 

 

5.4 The interaction of modulating processes 

Given the diverse processes regulating brain state, one may expect that multiple 

processes may co-exist temporally and interact with each other either in the same area or 

across different areas. It has been shown that in the alert state where the TC synapse is 

already depressed, the efficacy of adaptation is reduced (Castro-Alamancos, 2004). This 

seems to suggest that when multiple processes share a common mechanism, in this case 

TC synapse depression, there is likely a limited physiological capacity for that 

mechanism. Thus, it may appear that these processes may be mutually reducing each 

other‟s efficacy. However, the efficacy of adaptation is typically measured with an 

average response ratio in S1. It is unclear whether other changes known to be important 

for sensory encoding, such as variability and correlation are also reduced.  

 

As previously mentioned, many different mechanisms are involved in each process. In 

the context of concurrent alertness and sensory adaptation, the alertness was produced by 

stimulating the brain stem reticular formation to trigger the release of acetylcholine 

(Castro-Alamancos and Oldford, 2002; Steriade et al., 1990; Williams et al., 1994), or by 

wakefulness, which requires norepinephrine and most likely involves acetylcholine as 

well (Constantinople and Bruno, 2011), while sensory adaptation acts on a faster time 

scale in a column-specific manner that likely does not involve neuromodulatory 



www.manaraa.com

 108 

mechanisms. It is more likely the case that although in the presence of alertness, the 

efficacy of adaptation is reduced in terms of the response size in S1, the two processes 

still have complementary mechanisms and effects that may support different tasks.   

 

5.5 The nature of brain state 

It is starting to emerge in the literature that brain state is likely a high-dimensional 

continuum. The frequency of fluctuation in EEG was originally thought to change only 

between sleep and wakefulness (Steriade et al., 1993). More recent studies have shown 

this change in EEG or LFP activity exists on a finer gradient and broader spectrum. For 

example, low-frequency fluctuations also exist in quiet wakefulness, and active behavior 

beyond wakefulness, such as mobility and active whisking (Castro-Alamancos, 2004; 

Crochet and Petersen, 2006; Poulet and Petersen, 2008; Poulet et al., 2012; 

Sachidhanandam et al., 2013; Zagha and McCormick, 2014). Results in frequency and 

velocity specific adaptation in Chapter 3 also support the continuous modulation of brain 

state and its graded effect on stimulus encoding. However, there are still large 

distinctions between certain behaviors, such as transitioning from being asleep to being 

awake. Thus, a more likely nature of brain state is a continuum but with distinct 

transitions.   

 

There is a broadly consistent picture in the literature that associates many consistent 

cortical dynamics features together under the umbrella of one brain state – the de-

synchronized state is often associated with alertness, thalamic tonic firing, cortical 

suppression and desynchronization (Castro-Alamancos, 2004; Crochet and Petersen, 

2006; Curto et al., 2009; Poulet and Petersen, 2008; Poulet et al., 2012). However, more 

evidence also starts to point to more complex and dynamic effects. For example, attention 

suppresses low-frequency fluctuation, but could either increase or decrease gamma power 
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(Chalk et al., 2010; Fries et al., 2001; Harris and Thiele, 2011; Khayat et al., 2010). The 

stimulation of vM1 produces high-frequency activation, but does not require the thalamus 

(Zagha et al., 2013). Therefore, brain state does not simply encompasses a fixed list of 

cortical dynamics and corresponding behavior, but rather dynamically evokes different 

mechanisms and processes depending on the task placed on the sensory system.  

 

Although the results in this thesis focus on the effect of brain state on sensory evoked 

response in S1, the brain state is not only the spontaneous activity in S1. It encompasses 

diverse processes that can act on different temporal and spatial scales. The characteristics 

of S1 activity not only determine how the stimulus is encoded, but is also shaped by, and 

interact with the processes that reflect behavior, cognition, integration with other sensory 

modalities, and motor control. This interaction may also in turn regulate brain state. 

While S1 is in a certain state, its feedback to the thalamus or to M1 could determine what 

modulation effects the thalamus or M1 should provide the S1 next. This effect could 

certainly be state-dependent. Thus brain state can be either stabilized or switched by 

feedback mechanisms, possibly depending on the demand of the task.  

 

5.6 Future work 

As previously discussed, the brain states under anesthesia investigated here are likely a 

small range on the spectrum of brain state continuum. To better elucidate the mechanisms 

and functions of cortical dynamics, following this thesis, the experiments should be done 

in awake and behaving animals to investigate the effect of wakefulness and various 

behavior on brain state and sensory evoked activity. Voltage sensitive fluorescent protein 

encoded in adeno associated virus (AAV) can be injected into S1 of rats (Jin et al., 2012) 

that can later be trained on head-fixation. We can then observe the spatiotemporal 

activation of the S1 both spontaneously and sensory-evoked in the awake and head-fixed 
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animal. Cre-dependent animals can be utilized so that the activity of excitatory cells and 

inhibitory cells can be separately observed.  

 

The animals could be trained on a sensory task to answer the question of whether the 

perception is the same when the S1 exhibits the same sensory-evoked activity but the 

brain state is modulated by different mechanisms. In other words, does the animal have a 

separate awareness and interpretation of brain state separate from sensory perception? 

For example, the stimulus can be delivered when the thalamus is depolarized, or when the 

animal is whisking, or when vM1 stimulation is delivered, and the manipulation is 

adjusted accordingly to produce the same characteristic spontaneous S1 activity and 

sensory-evoked activity. The animal is then required to indicate the presence and a 

feature of the stimulus, which would elucidate whether the mechanism by which the state 

change was implemented affect the behavioral perceptibility of the stimulus feature, or 

the mechanisms are redundant such that the feature encoding remains unchanged. 

 

Finally, the role of cortical control of state, specifically S1 feedback to other areas such 

as the thalamus and M1, needs to be investigated. Does S1 control its own state via 

feedback mechanisms? For example, does S1 signal the thalamus to switch to 

hyperpolarization if it has been in high-frequency fluctuation for a certain period of time, 

or does it signal it to keep depolarized so that it can maintain the high-frequency 

fluctuation? Does this signal perhaps depend on other neuromodulatory effects or 

behavior?  

 

Answers to these questions could help us tease apart the complex mechanisms that 

govern brain state and provide insight into the nature of cortical variability, which 

ultimately determines the variability in the animal‟s perception and behavior.  
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